Browse > Article
http://dx.doi.org/10.4014/jmb.2006.06025

Regulation of Innate Immune Response to Fungal Infection in Caenorhabditis elegans by SHN-1/SHANK  

Sun, Lingmei (Department of Pharmacology, Medical School of Southeast University)
Li, Huirong (Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School, Southeast University)
Zhao, Li (Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School, Southeast University)
Liao, Kai (Department of Pathology and Pathophysiology, Medical School of Southeast University)
Publication Information
Journal of Microbiology and Biotechnology / v.30, no.11, 2020 , pp. 1626-1639 More about this Journal
Abstract
In Caenorhabditis elegans, SHN-1 is the homologue of SHANK, a scaffolding protein. In this study, we determined the molecular basis for SHN-1/SHANK in the regulation of innate immune response to fungal infection. Mutation of shn-1 increased the susceptibility to Candida albicans infection and suppressed the innate immune response. After C. albicans infection for 6, 12, or 24 h, both transcriptional expression of shn-1 and SHN-1::GFP expression were increased, implying that the activated SHN-1 may mediate a protection mechanism for C. elegans against the adverse effects from fungal infection. SHN-1 acted in both the neurons and the intestine to regulate the innate immune response to fungal infection. In the neurons, GLR-1, an AMPA ionotropic glutamate receptor, was identified as the downstream target in the regulation of innate immune response to fungal infection. GLR-1 further positively affected the function of SER-7-mediated serotonin signaling and antagonized the function of DAT-1-mediated dopamine signaling in the regulation of innate immune response to fungal infection. Our study suggests the novel function of SHN-1/SHANK in the regulation of innate immune response to fungal infection. Moreover, our results also denote the crucial role of neurotransmitter signals in mediating the function of SHN-1/SHANK in regulating innate immune response to fungal infection.
Keywords
SHN-1; innate immunity; neurotransmitter; Candida albicans; Caenorhabditis elegans;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Sun L, Liao K, Hang C, Wang D. 2017. Honokiol induces reactive oxygen species-mediated apoptosis in Candida albicans through mitochondrial dysfunction. PLoS One. 12: e172228.
2 Pantel A, Dunyach-Remy C, Ngba EC, Mesureur J, Sotto A, Pages JM, et al. 2016. Modulation of membrane influx and efflux in Escherichia coli sequence type 131 has an impact on bacterial motility, biofilm formation, and virulence in a Caenorhabditis elegans model. Antimicrob. Agents Chemother. 60: 2901-2911.   DOI
3 Kurz CL, Ewbank JJ. 2003. Caenorhabditis elegans: an emerging genetic model for the study of innate immunity. Nat. Rev. Genet. 4: 380-390.   DOI
4 Oh WC, Song HO, Cho JH, Park BJ. 2011. ANK repeat-domain of SHN-1 is indispensable for in vivo SHN-1 function in C. elegans. Mol. Cells. 31: 79-84.   DOI
5 Huang G, Chen S, Chen X, Zheng J, Xu Z, Doostparast TA, et al. 2019. Uncovering the functional link between SHANK3 deletions and deficiency in neurodevelopment using iPSC-derived human neurons. Front. Neuroanat. 13: 23.   DOI
6 Yoo YE, Yoo T, Lee S, Lee J, Kim D, Han HM, et al. 2019. Shank3 mice carrying the human Q321R mutation display enhanced selfgrooming, bbnormal electroencephalogram patterns, and suppressed neuronal excitability and seizure susceptibility. Front Mol. Neurosci. 12: 155.   DOI
7 Katz M, Corson F, Keil W, Singhal A, Bae A, Lu Y, et al. 2019. Glutamate spillover in C. elegans triggers repetitive behavior through presynaptic activation of MGL-2/mGluR5. Nat. Commun. 10: 1882.   DOI
8 Alvarez J, Alvarez-Illera P, Garcia-Casas P, Fonteriz RI, Montero M. 2020. The role of Ca2+ signaling in aging and neurodegeneration: insights from Caenorhabditis elegans models. Cells 9: 204.   DOI
9 Sellegounder D, Yuan CH, Wibisono P, Liu Y, Sun J. 2018. Octopaminergic signaling mediates neural regulation of innate immunity in Caenorhabditis elegans. mBio. 9: e01645-18.
10 Koutsilieri E, Riederer P, du Plessis S, Scheller C. 2014. A short review on the relation between the dopamine transporter 10/10- repeat allele and ADHD: implications for HIV infection. ADHD Atten. Def. Hyp. Disord. 6: 203-209.   DOI
11 Quintero-Villegas A, Valdes-Ferrer SI. 2019. Role of 5-HT7 receptors in the immune system in health and disease. Mol. Med. 26: 2.   DOI
12 Sun LM, Liao K, Liang S, Yu PH, Wang DY. 2015. Synergistic activity of magnolol with azoles and its possible antifungal mechanism against Candida albicans. J. Appl. Microbiol. 118: 826-838.   DOI
13 Pukkila-Worley R, Peleg AY, Tampakakis E, Mylonakis E. 2009. Candida albicans hyphal formation and virulence assessed using a Caenorhabditis elegans infection model. Eukaryot. Cell. 8: 1750-1758.   DOI
14 Mylonakis E, Casadevall A, Ausubel FM. 2007. Exploiting amoeboid and non-vertebrate animal model systems to study the virulence of human pathogenic fungi. PLoS Pathog. 3: e101.   DOI
15 Gow NA, Brown AJ, Odds FC. 2002. Fungal morphogenesis and host invasion. Curr. Opin. Microbiol. 5: 366-371.   DOI
16 Sun LM, Ye XL, Ding DF, Liao K. 2019. Opposite effects of vitamin C and vitamin E on the antifungal activity of honokiol. J. Microbiol. Biotechnol. 16: 2325-2335.
17 Pukkila-Worley R, Mylonakis E. 2010. From the outside in and the inside out: antifungal immune responses in Caenorhabditis elegans. Virulence 1: 111-112.   DOI
18 Wan M, Ding L, Wang D, Han J, Gao P. 2020. Serotonin: a potent immune cell modulator in autoimmune diseases. Front. Immunol. 11: 186.   DOI
19 Berman J, Sudbery PE. 2002. Candida albicans: a molecular revolution built on lessons from budding yeast. Nat. Rev. Genet. 3: 918-930.   DOI
20 Mayer FL, Wilson D, Hube B. 2013. Candida albicans pathogenicity mechanisms. Virulence 4: 119-128.   DOI
21 Pukkila-Worley R, Ausubel FM, Mylonakis E. 2011. Candida albicans infection of Caenorhabditis elegans induces antifungal immune defenses. PLoS Pathog. 7: e1002074.   DOI
22 Shakoor S, Sun L, Wang D. 2016. Multi-walled carbon nanotubes enhanced fungal colonization and suppressed innate immune response to fungal infection in nematodes. Toxicol. Res. (Camb). 5: 492-499.   DOI
23 Sun LM, Zhi LT, Shakoor S, Liao K, Wang DY. 2016. MicroRNAs involved in the control of innate immunity in Candida infected Caenorhabditis elegans. Sci. Rep. 6: 36036 .   DOI
24 Brenner S. 1974. The genetics of Caenorhabditis elegans. Genetics 77: 71-94.   DOI
25 Wang Z, Potter CS, Sundberg JP, Hogenesch H. 2012. SHARPIN is a key regulator of immune and inflammatory responses. J. Cell Mol. Med. 16: 2271-2279.   DOI
26 Grabrucker AM, Schmeisser MJ, Schoen M, Boeckers TM. 2011. Postsynaptic prosap/shank scaffolds in the cross-hair of synaptopathies. Trends Cell Biol. 21: 594-603.   DOI
27 Naisbitt S, Kim E, Tu JC, Xiao B, Sala C, Valtschanoff J, et al. 1999. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 23: 569-582.   DOI
28 Ganor Y, Besser M, Ben-Zakay N, Unger T, Levite M. 2003. Human T cells express a functional ionotropic glutamate receptor GluR3, and glutamate by itself triggers integrin-mediated adhesion to laminin and fibronectin and chemotactic migration. J. Immunol. 170: 4362-4372.   DOI
29 Jee C, Lee J, Lee JI, Lee WH, Park BJ, Yu JR, et al. 2004 . SHN-1, a shank homologue in C. elegans, affects defecation rhythm via the inositol-1,4,5-trisphosphate receptor. FEBS Lett. 561: 29-36.   DOI
30 Wang D, Cao M, Dinh J, Dong Y. 2013. Methods for creating mutations in C. elegans that extend lifespan. Methods Mol. Biol. 1048: 65-75.   DOI
31 Breger J, Fuchs BB, Aperis G, Moy TI, Ausubel FM, Mylonakis E. 2007. Antifungal chemical compounds identified using a C. elegans pathogenicity assay. PLoS Pathog. 3: e18.   DOI
32 Mello C, Fire A. 1995. DNA transformation. Methods Cell Biol. 48: 451-482.   DOI
33 Jiang YH, Ehlers MD. 2013. Modeling autism by shank gene mutations in mice. Neuron 78: 8-27.   DOI
34 Lee RY, Lobel L, Hengartner M, Horvitz HR, Avery L. 1997. Mutations in the alpha1 subunit of an L-type voltage-activated Ca2+ channel cause myotonia in Caenorhabditis elegans. EMBO J. 16: 6066-6076.   DOI
35 Kullyev A, Dempsey CM, Miller S, Kuan CJ, Hapiak VM, Komuniecki RW, et al. 2010. A genetic survey of fluoxetine action on synaptic transmission in Caenorhabditis elegans. Genetics 186: 929-941.   DOI
36 Maricq AV, Peckol E, Driscoll M, Bargmann CI. 1995. Mechanosensory signalling in C. elegans mediated by the glr-1 glutamate receptor. Nature 378: 78-81.   DOI
37 Reece-Hoyes JS, Shingles J, Dupuy D, Grove CA, Walhout AJ, Vidal M, et al. 2007. Insight into transcription factor gene duplication from Caenorhabditis elegans promoterome-driven expression patterns. BMC Genomics 8: 27.   DOI
38 Kass J, Jacob TC, Kim P, Kaplan JM. 2001. The EGL-3 proprotein convertase regulates mechanosensory responses of Caenorhabditis elegans. J. Neurosci. 21: 9265-9272.   DOI
39 Wacker I, Schwarz V, Hedgecock EM, Hutter H. 2003. Zag-1, a Zn-finger homeodomain transcription factor controlling neuronal differentiation and axon outgrowth in C. elegans. Development 130: 3795-3805.   DOI
40 Zhong W, Sternberg PW. 2006. Genome-wide prediction of C. elegans genetic interactions. Science 311: 1481-1484.   DOI
41 Kowalski JR, Dahlberg CL, Juo P. 2011. The deubiquitinating enzyme USP-46 negatively regulates the degradation of glutamate receptors to control their abundance in the ventral nerve cord of Caenorhabditis elegans. J. Neurosci. 31: 1341-1354.   DOI
42 Allen AT, Maher KN, Wani KA, Betts KE, Chase DL. 2011. Coexpressed D1- and D2-like dopamine receptors antagonistically modulate acetylcholine release in Caenorhabditis elegans. Genetics 188: 579-590.   DOI
43 Nass R, Hahn MK, Jessen T, McDonald PW, Carvelli L, Blakely RD. 2005. A genetic screen in Caenorhabditis elegans for dopamine neuron insensitivity to 6-hydroxydopamine identifies dopamine transporter mutants impacting transporter biosynthesis and trafficking. J. Neurochem. 94: 774-785.   DOI
44 Wu Q, Cao X, Yan D, Wang D, Aballay A. 2015. Genetic screen reveals link between the maternal effect sterile gene Mes-1 and Pseudomonas aeruginosa-induced neurodegeneration in Caenorhabditis elegans. J. Biol. Chem. 290: 29231-29239.   DOI
45 Mylonakis E, Aballay A. 2005. Worms and flies as genetically tractable animal models to study host-pathogen interactions. Infect. Immun. 73: 3833-3841.   DOI
46 Irazoqui JE, Urbach JM, Ausubel FM. 2010. Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates. Nat. Rev. Immunol. 10: 47-58.   DOI
47 Aballay A, Ausubel FM. 2002. Caenorhabditis elegans as a host for the study of host-pathogen interactions. Curr. Opin. Microbiol. 5: 97-101.   DOI
48 Yu Y, Zhi L, Wu Q, Jing L, Wang D. 2018. NPR-9 regulates the innate immune response in Caenorhabditis elegans by antagonizing the activity of AIB interneurons. Cell Mol. Immunol. 15: 27-37.   DOI
49 Zhi L, Yu Y, Li X, Wang D, Wang D. 2017. Molecular control of innate immune response to Pseudomonas aeruginosa infection by intestinal Let-7 in Caenorhabditis elegans. PLoS Pathog. 13: e1006152.   DOI