DOI QR코드

DOI QR Code

동해 연안 왕거머리말의 수직분포 제한 요인

Factors Limiting the Vertical Distribution of the Deep-Water Asian Eelgrass, Zostera asiatica on the East Coast of the Korean Peninsula

  • KIM, JONG-HYEOB (Department of Biological Sciences, Pusan National University) ;
  • KIM, HYEGWANG (Department of Biological Sciences, Pusan National University) ;
  • KIM, SEUNG HYEON (Department of Biological Sciences, Pusan National University) ;
  • KIM, YOUNG KYUN (Department of Biological Sciences, Pusan National University) ;
  • LEE, KUN-SEOP (Department of Biological Sciences, Pusan National University)
  • 투고 : 2020.08.07
  • 심사 : 2020.10.15
  • 발행 : 2020.11.30

초록

국내 연안에 분포하는 대부분의 거머리말속 잘피종들은 수심이 얕고 파랑에너지가 약한 내만 등에 주로 분포하지만, 왕거머리말은 동해안의 약 10 m 내외의 비교적 깊은 수심에서만 제한적으로 분포한다. 본 연구는 우리나라 동해안의 왕거머리말이 비교적 깊은 수심에 한정되어 분포하는 이유를 알아보고자 약 9 m 수심의 자연생육지에서 3 m의 얕은 수심으로 잘피를 이식하여 생리생태학적 변화를 관찰하였다. 2011년 10월에 이식을 수행하였고, 이후 약 1년 동안 자연생육지와 이식 장소의 환경요인 및 왕거머리말의 생리생태학적 특성(생육밀도, 성장률, 형태 및 광합성 특성)을 비교하였다. 이식 초기에 왕거머리말의 생육밀도 및 크기는 자연생육지에 비해 큰 폭의 감소를 보였지만, 2012년 봄 이후 자연생육지와 유사한 경향을 보였다. 반면에, 이식된 왕거머리말의 성장률은 자연생육지보다 증가하였는데, 이는 얕은 수심으로 인한 수중광량과 무기영양염 농도의 증가 때문으로 추정된다. 또한 이식된 왕거머리말은 수중광량이 증가함에 따라 최대상대전자전달율(rETRmax)과 포화광량(Ek)이 증가하고 전자전달효율(α)이 감소하는 생리학적 변화를 보였다. 하지만 이식된 왕거머리말은 2012년 태풍 발생 이후 대부분 소실되었고, 이는 태풍에 의한 파랑에너지가 얕은 수심에서 더 강하게 영향을 미쳤기 때문인 것으로 추정되었다. 단조로운 해안선을 지닌 동해안의 개방된 연안에서 왕거머리말은 얕은 수심의 유리한 광조건에도 불구하고, 태풍과 같은 자연재해 발생시 강한 파랑에너지에 의해 얕은 수심에서는 생존이 불가능한 것으로 추정되었으며, 따라서 물리적 스트레스의 영향을 줄이기 위해 상대적으로 깊은 수심에 한정되어 분포하는 것으로 판단되었다.

Although most species in genus Zostera inhabit shallow coastal areas and bays with weak wave energy, the Asian eelgrass, Zostera asiatica is distributed in deep water depth (8-15 m) unlike other seagrasses on the eastern coast of Korea. To examine factors limiting distribution Z. asiatica in relatively deep coastal areas, a transplantation experiment was conducted on October 2011, in which Z. asiatica shoots were transplanted from the reference site (donor meadow, ~9 m) to the shallow transplant site (~3 m). We compared shoot density, morphology, and productivity of Z. asiatica as well as environmental factors (underwater irradiance, water temperature, and nutrients) between the reference and transplant sites from October 2011 to September 2012. Shoot density and shoot height of transplants dramatically decreased within a few months after transplantation, but were similar with Z. asiatica in the reference site during spring. Shoot productivity were significantly higher in the transplant site than in reference site because of high light availability and nutrient concentrations. Transplants showed photoacclimatory responses such as higher rETRmax and Ek and lower photosynthetic efficiency in the transplant site than those in the reference site. Most of Z. asiatica transplant in the shallow transplant site disappeared in summer, which may be due to the high wave energy and physical damages induced by typhoons (TEMBIN and SANBA) in August and September 2012. According to the results of this study, Z. asiatica could not survive in shallow areas despite of more favorable light and nutrient conditions. Thus, Z. asiatica may restrictively occur in deep areas to avoid the intense physical stresses in the shallow area on the east coast of Korea.

키워드

참고문헌

  1. Cabaco, S., R. Machas and R. Santos, 2009. Individual and population plasticity of the seagrass zostera noltii along a vertical intertidal gradient. Estuar. Coast. Shelf Sci., 82: 301-308. https://doi.org/10.1016/j.ecss.2009.01.020
  2. Campbell, S.J. and L.J. McKenzie, 2004. Flood related loss and recovery of intertidal seagrass meadows in southern Queensland, Australia. Estuar. Coast. Shelf Sci., 60: 477-490. https://doi.org/10.1016/j.ecss.2004.02.007
  3. Campbell, S.J., L.J. McKenzie, S.P. Kerville and J.S. Bite, 2007. Patterns in tropical seagrass photosynthesis in relation to light, depth and habitat. Estuar. Coast. Shelf Sci., 73: 551-562. https://doi.org/10.1016/j.ecss.2007.02.014
  4. Choi, S.K., S. Kim, K.-S. Lee, W.-T. Li and S.R. Park, 2016. The ecological importance of the dwarf seagrass Zostera japonica in intertidal areas on the southern coast of Korea. Ocean Sci. J., 51: 1-12. https://doi.org/10.1007/s12601-016-0001-4
  5. Collier, C.J., P.S. Lavery, R.J. Masini and P.J. Ralph, 2007. Morphological, growth and meadow characteristics of the seagrass Posidonia sinuosa along a depth-related gradient of light availability. Mar. Ecol. Prog. Ser., 337: 103-115. https://doi.org/10.3354/meps337103
  6. Collier, C.J., P.S. Lavery, P.J. Ralph and R.J. Masini, 2008. Physiological characteristics of the seagrass Posidonia sinuosa along a depth-related gradient of light availability. Mar. Ecol. Prog. Ser., 353: 65-79. https://doi.org/10.3354/meps07171
  7. Costanza, R., R. De Groot, P. Sutton, S. Van der Ploeg, S.J. Anderson, I. Kubiszewski, S. Farber and R.K. Turner, 2014. Changes in the global value of ecosystem services. Global Environ. Change, 26: 152-158. https://doi.org/10.1016/j.gloenvcha.2014.04.002
  8. Duarte, C.M., I.J. Losada, I.E. Hendriks, I. Mazarrasa and N. Marba, 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change, 3: 961-968. https://doi.org/10.1038/nclimate1970
  9. Durako, M.J. and J.I. Kunzelman, 2002. Photosynthetic characteristics of Thalassia testudinum measured in situ by pulse-amplitude modulated (PAM) fluorometry: Methodological and scale-based considerations. Aquat. Bot., 73: 173-185. https://doi.org/10.1016/S0304-3770(02)00020-7
  10. Fourqurean, J.W., C.M. Duarte, H. Kennedy, N. Marba, M. Holmer, M.A. Mateo, E.T. Apostolaki, G.A. Kendrick, D. Krause-Jensen and K.J. McGlathery, 2012. Seagrass ecosystems as a globally significant carbon stock. Nature geoscience, 5: 505. https://doi.org/10.1038/ngeo1477
  11. Green, E.P., F.T. Short and T. Frederick, 2003. World atlas of seagrasses. Univ of California Press, Berkely, 298 pp.
  12. Infantes, E., J. Terrados, A. Orfila, B. Canellas and A. Alvarez-Ellacuria, 2009. Wave energy and the upper depth limit distribution of Posidonia oceanica. Bot. Mar., 52: 419-427.
  13. Jassby, A.D. and T. Platt, 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr., 21: 540-547. https://doi.org/10.4319/lo.1976.21.4.0540
  14. Kentula, M.E. and C.D. McIntire, 1986. The autecology and production dynamics of eelgrass (Zostera marina L.) in netarts bay, Oregon. Estuaries, 9: 188. https://doi.org/10.2307/1352130
  15. Kim, K., J.-K. Choi, J.-H. Ryu, H.J. Jeong, K. Lee, M.G. Park and K.Y. Kim, 2015. Observation of typhoon-induced seagrass die-off using remote sensing. Estuar. Coast. Shelf Sci., 154: 111-121. https://doi.org/10.1016/j.ecss.2014.12.036
  16. Koch, E.W., J.D. Ackerman, J. Verduin and M. van Keulen, 2007. Fluid dynamics in seagrass ecology-from molecules to ecosystems. In: Seagrasses: biology, ecology and conservation, edited by Larkum, A.W.D., R.J. Orth and C.M. Duarte, Springer, The netherlands, pp. 193-225.
  17. Kritzer, J.P., M.-B. DeLucia, E. Greene, C. Shumway, M.F. Topolski, J. Thomas-Blate, L.A. Chiarella, K.B. Davy and K. Smith, 2016. The importance of benthic habitats for coastal fisheries. Bioscience, 66: 274-284. https://doi.org/10.1093/biosci/biw014
  18. Lee, K.-S., S.H. Kim and Y.K. Kim, 2018. Current Status of Seagrass Habitat in Korea. In: The Wetland Book: II: Distribution, Description, and Conservation, edited by C.M. Finlayson, G.R. Milton, R.C. Prentice and N.C. Davidson. Springer, The netherlands, pp. 1589-1596.
  19. Lee, K.-S., J.-I. Park, Y.K. Kim, S.R. Park and J.-H. Kim, 2007a. Recolonization of Zostera marina following destruction caused by a red tide algal bloom: the role of new shoot recruitment from seed banks. Mar. Ecol. Prog. Ser., 342: 105-115. https://doi.org/10.3354/meps342105
  20. Lee, K.-S., S.R. Park and J.-B. Kim, 2005. Production dynamics of the eelgrass, Zostera marina in two bay systems on the south coast of the korean peninsula. Mar. Biol., 147: 1091-1108. https://doi.org/10.1007/s00227-005-0011-8
  21. Lee, K.-S., S.R. Park and Y.K. Kim, 2007b. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: A review. J. Exp. Mar. Biol. Ecol., 350: 144-175. https://doi.org/10.1016/j.jembe.2007.06.016
  22. Lee, S.Y., C.J. Kwon, T.J. Kim, Y.B. Suh and C.I. Choi, 1999. Morphological examination of Zostera asiatica Miki (Zosteraceae) from various habitats. Korean J. Environ. Biol, 17: 504-512.
  23. Li, W.-T., Y.K. Kim, J.-I. Park, X.-m. Zhang, G.-Y. Du and K.-S. Lee, 2014. Comparison of seasonal growth responses of Zostera marina transplants to determine the optimal transplant season for habitat restoration. Ecol. Eng., 71: 56-65. https://doi.org/10.1016/j.ecoleng.2014.07.020
  24. Maxwell, K. and G.N. Johnson, 2000. Chlorophyll flouorescence-a practical guide. J. Exp. Bot., 51: 659-668. https://doi.org/10.1093/jexbot/51.345.659
  25. Mcleod, E., G.L. Chmura, S. Bouillon, R. Salm, M. Bjork, C.M. Duarte, C.E. Lovelock, W.H. Schlesinger and B.R. Silliman, 2011. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering $CO_2$. Front. Ecol. Environ., 9: 552-560. https://doi.org/10.1890/110004
  26. Moseby, K.E., A. Daniels, V. Duri, W. Tropa, S. Welma, A. Bero and K. Soapi, 2020. Community-based monitoring detects catastrophic earthquake and tsunami impacts on seagrass beds in the Solomon Islands. Mar. Pollut. Bull., 150: 110444. https://doi.org/10.1016/j.marpolbul.2019.07.032
  27. Nordlund, L.M., E.W. Koch, E.B. Barbier and J.C. Creed, 2016. Seagrass ecosystem services and their variability across genera and geographical regions. PLoS One, 11: e0163091. https://doi.org/10.1371/journal.pone.0163091
  28. O'Brien, K.R., M.P. Adams, A.J. Ferguson, J. Samper-Villarreal, P.S. Maxwell, M.E. Baird and C. Collier, 2018. Seagrass resistance to light deprivation: Implications for resilience. In: Seagrasses of Australia, edited by Larkum A., Kendrick G., Ralph P., Springer, Cham, pp. 287-311.
  29. Park, J.-I., J.-H. Kim and S.H. Park, 2016a. Growth dynamics of the deep-water asian eelgrass, Zostera asiatica, in the eastern coastal waters of Korea. Ocean Sci. J., 51: 613-625. https://doi.org/10.1007/s12601-016-0052-6
  30. Park, J.-I., Y.K. Kim, S.R. Park, J.-H. Kim, Y.-S. Kim, J.-B. Kim, P.-Y. Lee, C.-K. Kang and K.-S. Lee, 2005. Selection of the optimal transplanting method and time for restoration of Zostera marina habitats. Algae, 20(4): 379-388. https://doi.org/10.4490/ALGAE.2005.20.4.379
  31. Park, J.-I. and K.-S. Lee, 2009. Peculiar growth dynamics of the surfgrass Phyllospadix japonicus on the southeastern coast of Korea. Mar. Biol., 156: 2221-2233. https://doi.org/10.1007/s00227-009-1250-x
  32. Park, J.-I., W. Li, J.-B. Kim and K.-S. Lee, 2009. Changes in productivity and morphological characteristics of Zostera marina transplants. The Sea, 14: 41-47.
  33. Park, S.R., S. Kim, Y.K. Kim, C.-K. Kang and K.-S. Lee, 2016b. Photoacclimatory responses of Zostera marina in the intertidal and subtidal zones. PLoS One, 11: e0156214. https://doi.org/10.1371/journal.pone.0156214
  34. Parsons, T., Y. Maita and C.M. Lalli, 1984. A manual of chemical and biological methods for seawater analysis. pergamon press.
  35. Peterson, B.J., C.D. Rose, L.M. Rutten and J.W. Fourqurean, 2002. Disturbance and recovery following catastrophic grazing: studies of a successional chronosequence in a seagrass bed. Oikos, 97: 361-370. https://doi.org/10.1034/j.1600-0706.2002.970306.x
  36. Phandee, S. and P. Buapet, 2018. Photosynthetic and antioxidant responses of the tropical intertidal seagrasses Halophila ovalis and Thalassia hemprichii to moderate and high irradiances. Bot. Mar., 61: 247-256. https://doi.org/10.1515/bot-2017-0084
  37. Phillips, R.C. and S.W. Echeverria, 1990. Zostera asiatica Miki on the Pacific coast of North America. Pac. Sci., 44(2): 130-134.
  38. Platt, T., C.L. Gallegos and W.G. Harrison, 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J. Mar. Res., 38: 687-701.
  39. Potouroglou, M., J.C. Bull, K.W. Krauss, H.A. Kennedy, M. Fusi, D. Daffonchio, M.M. Mangora, M.N. Githaiga, K. Diele and M. Huxham, 2017. Measuring the role of seagrasses in regulating sediment surface elevation. Scientific reports, 7: 1-11. https://doi.org/10.1038/s41598-016-0028-x
  40. Ralph, P., M.J. Durako, S. Enriquez, C. Collier and M. Doblin, 2007. Impact of light limitation on seagrasses. J. Exp. Mar. Biol. Ecol., 350: 176-193. https://doi.org/10.1016/j.jembe.2007.06.017
  41. Ralph, P.J. and M.D. Burchett, 1995. Photosynthetic responses of the seagrass Halophila ovalis (R. Br.) Hook. f. to high irradiance stress, using chlorophyll a fluorescence. Aquat. Bot., 51: 55-66. https://doi.org/10.1016/0304-3770(95)00456-A
  42. Ralph, P.J. and R. Gademann, 2005. Rapid light curves: A powerful tool to assess photosynthetic activity. Aquat. Bot., 82: 222-237. https://doi.org/10.1016/j.aquabot.2005.02.006
  43. Rivers, D.O. and F.T. Short, 2007. Effect of grazing by Canada geese Branta canadensis on an intertidal eelgrass Zostera marina meadow. Mar. Ecol. Prog. Ser., 333: 271-279. https://doi.org/10.3354/meps333271
  44. Ruiz-Frau, A., S. Gelcich, I. Hendriks, C.M. Duarte and N. Marba, 2017. Current state of seagrass ecosystem services: Research and policy integration. Ocean Coast. Manage., 149: 107-115. https://doi.org/10.1016/j.ocecoaman.2017.10.004
  45. Sandoval-Gil, J., A. Alexandre, R. Santos and V.F. Camacho-Ibar, 2016. Nitrogen uptake and internal recycling in Zostera marina exposed to oyster farming: Eelgrass potential as a natural biofilter, Estuaries and Coasts. 39: 1694-1708. https://doi.org/10.1007/s12237-016-0102-4
  46. Sharon, Y., O. Levitan, D. Spungin, I. Berman-Frank and S. Beer, 2011. Photoacclimation of the seagrass Halophila stipulacea to the dim irradiance at its 48-meter depth limit. Limnol. Oceanogr., 56: 357-362. https://doi.org/10.4319/lo.2011.56.1.0357
  47. Shi, Y., H. Fan, X. Cui, L. Pan, S. Li and X. Song, 2010. Overview on seagrasses and related research in China. Chin. J. Oceanol. Limnol., 28: 329-339. https://doi.org/10.1007/s00343-010-9183-2
  48. Short, F., T. Carruthers, W. Dennison and M. Waycott, 2007. Global seagrass distribution and diversity: A bioregional model. J. Exp. Mar. Biol. Ecol., 350: 3-20. https://doi.org/10.1016/j.jembe.2007.06.012
  49. Short, F.T., 1987. Effects of sediment nutrients on seagrasses: Literature review and mesocosm experiment. Aquat. Bot., 27: 41-57. https://doi.org/10.1016/0304-3770(87)90085-4
  50. Tanaka, N., S. Akaike, M. Ishii, R. Ishikawa, H. Ito, T. Kudo, D. Muraoka, A. Oshino, M. Saigusa and S. Urabe, 2009. Distribution of Zostera species in Japan. II. Zostera asiatica Miki, Z. caespitosa Miki and Z. caulescens Miki (Zosteraceae). Bull. Natl. Mus. Nat. Sci. Ser. B., 35: 211-218.
  51. Thomson, J.A., D.A. Burkholder, M.R. Heithaus, J.W. Fourqurean, M.W. Fraser, J. Statton and G.A. Kendrick, 2015. Extreme temperatures, foundation species, and abrupt ecosystem change: an example from an iconic seagrass ecosystem. Glob. Change Biol. 21: 1463-1474. https://doi.org/10.1111/gcb.12694
  52. Unsworth, R.K., R. Ambo-Rappe, B.L. Jones, Y.A. La Nafie, A. Irawan, U.E. Hernawan, A.M. Moore and L.C. Cullen-Unsworth, 2018. Indonesia's globally significant seagrass meadows are under widespread threat. Sci. Total Environ., 634: 279-286. https://doi.org/10.1016/j.scitotenv.2018.03.315
  53. Unsworth, R.K., L.M. Nordlund and L.C. Cullen-Unsworth, 2019. Seagrass meadows support global fisheries production. Conservation Letters, 12: e12566. https://doi.org/10.1111/conl.12566
  54. Vacchi, M., M. Montefalcone, C.N. Bianchi, C. Morri and M. Ferrari, 2010. The influence of coastal dynamics on the upper limit of the Posidonia oceanica meadow. Mar. Ecol., 31: 546-554. https://doi.org/10.1111/j.1439-0485.2010.00377.x
  55. Watanabe, M., M. Nakaoka and H. Mukai, 2005. Seasonal variation in vegetative growth and production of the endemic japanese seagrass Zostera asiatica: A comparison with sympatric Zostera marina. Bot. Mar., 48: 266-273.
  56. Waycott, M., C.M. Duarte, T.J. Carruthers, R.J. Orth, W.C. Dennison, S. Olyarnik, A. Calladine, J.W. Fourqurean, K.L. Heck and A.R. Hughes, 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci., 106: 12377-12381. https://doi.org/10.1073/pnas.0905620106
  57. Webb, W.L., M. Newton and D. Starr, 1974. Carbon dioxide exchange of Alnus Rubra. Oecologia, 17: 281-291. https://doi.org/10.1007/BF00345747
  58. Whippo, R., N.S. Knight, C. Prentice, J. Cristiani, M.R. Siegle and M.I. O'Connor, 2018. Epifaunal diversity patterns within and among seagrass meadows suggest landscape-scale biodiversity processes. Ecosphere, 9: e02490. https://doi.org/10.1002/ecs2.2490
  59. Wyllie-Echeverria, S. and J. Ackerman, 2003. The Pacific Coast of North America. In: World atlas of seagrasses, edited by Green, E.P., Short, F.T., University of California Press, Berkeley, pp. 199-206.
  60. York, P.H., R.K. Gruber, R. Hill, P.J. Ralph, D.J. Booth and P.I. Macreadie, 2013. Physiological and morphological responses of the temperate seagrass Zostera muelleri to multiple stressors: Investigating the interactive effects of light and temperature. PloS one, 8: e76377. https://doi.org/10.1371/journal.pone.0076377