Browse > Article
http://dx.doi.org/10.7850/jkso.2020.25.4.117

Factors Limiting the Vertical Distribution of the Deep-Water Asian Eelgrass, Zostera asiatica on the East Coast of the Korean Peninsula  

KIM, JONG-HYEOB (Department of Biological Sciences, Pusan National University)
KIM, HYEGWANG (Department of Biological Sciences, Pusan National University)
KIM, SEUNG HYEON (Department of Biological Sciences, Pusan National University)
KIM, YOUNG KYUN (Department of Biological Sciences, Pusan National University)
LEE, KUN-SEOP (Department of Biological Sciences, Pusan National University)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.25, no.4, 2020 , pp. 117-131 More about this Journal
Abstract
Although most species in genus Zostera inhabit shallow coastal areas and bays with weak wave energy, the Asian eelgrass, Zostera asiatica is distributed in deep water depth (8-15 m) unlike other seagrasses on the eastern coast of Korea. To examine factors limiting distribution Z. asiatica in relatively deep coastal areas, a transplantation experiment was conducted on October 2011, in which Z. asiatica shoots were transplanted from the reference site (donor meadow, ~9 m) to the shallow transplant site (~3 m). We compared shoot density, morphology, and productivity of Z. asiatica as well as environmental factors (underwater irradiance, water temperature, and nutrients) between the reference and transplant sites from October 2011 to September 2012. Shoot density and shoot height of transplants dramatically decreased within a few months after transplantation, but were similar with Z. asiatica in the reference site during spring. Shoot productivity were significantly higher in the transplant site than in reference site because of high light availability and nutrient concentrations. Transplants showed photoacclimatory responses such as higher rETRmax and Ek and lower photosynthetic efficiency in the transplant site than those in the reference site. Most of Z. asiatica transplant in the shallow transplant site disappeared in summer, which may be due to the high wave energy and physical damages induced by typhoons (TEMBIN and SANBA) in August and September 2012. According to the results of this study, Z. asiatica could not survive in shallow areas despite of more favorable light and nutrient conditions. Thus, Z. asiatica may restrictively occur in deep areas to avoid the intense physical stresses in the shallow area on the east coast of Korea.
Keywords
Depth distribution; Photosynthetic characteristics; Seagrass; Transplantation; Zostera asiatica;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Peterson, B.J., C.D. Rose, L.M. Rutten and J.W. Fourqurean, 2002. Disturbance and recovery following catastrophic grazing: studies of a successional chronosequence in a seagrass bed. Oikos, 97: 361-370.   DOI
2 York, P.H., R.K. Gruber, R. Hill, P.J. Ralph, D.J. Booth and P.I. Macreadie, 2013. Physiological and morphological responses of the temperate seagrass Zostera muelleri to multiple stressors: Investigating the interactive effects of light and temperature. PloS one, 8: e76377.   DOI
3 Cabaco, S., R. Machas and R. Santos, 2009. Individual and population plasticity of the seagrass zostera noltii along a vertical intertidal gradient. Estuar. Coast. Shelf Sci., 82: 301-308.   DOI
4 Collier, C.J., P.S. Lavery, R.J. Masini and P.J. Ralph, 2007. Morphological, growth and meadow characteristics of the seagrass Posidonia sinuosa along a depth-related gradient of light availability. Mar. Ecol. Prog. Ser., 337: 103-115.   DOI
5 Campbell, S.J. and L.J. McKenzie, 2004. Flood related loss and recovery of intertidal seagrass meadows in southern Queensland, Australia. Estuar. Coast. Shelf Sci., 60: 477-490.   DOI
6 Campbell, S.J., L.J. McKenzie, S.P. Kerville and J.S. Bite, 2007. Patterns in tropical seagrass photosynthesis in relation to light, depth and habitat. Estuar. Coast. Shelf Sci., 73: 551-562.   DOI
7 Choi, S.K., S. Kim, K.-S. Lee, W.-T. Li and S.R. Park, 2016. The ecological importance of the dwarf seagrass Zostera japonica in intertidal areas on the southern coast of Korea. Ocean Sci. J., 51: 1-12.   DOI
8 Collier, C.J., P.S. Lavery, P.J. Ralph and R.J. Masini, 2008. Physiological characteristics of the seagrass Posidonia sinuosa along a depth-related gradient of light availability. Mar. Ecol. Prog. Ser., 353: 65-79.   DOI
9 Costanza, R., R. De Groot, P. Sutton, S. Van der Ploeg, S.J. Anderson, I. Kubiszewski, S. Farber and R.K. Turner, 2014. Changes in the global value of ecosystem services. Global Environ. Change, 26: 152-158.   DOI
10 Duarte, C.M., I.J. Losada, I.E. Hendriks, I. Mazarrasa and N. Marba, 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change, 3: 961-968.   DOI
11 Durako, M.J. and J.I. Kunzelman, 2002. Photosynthetic characteristics of Thalassia testudinum measured in situ by pulse-amplitude modulated (PAM) fluorometry: Methodological and scale-based considerations. Aquat. Bot., 73: 173-185.   DOI
12 Jassby, A.D. and T. Platt, 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr., 21: 540-547.   DOI
13 Fourqurean, J.W., C.M. Duarte, H. Kennedy, N. Marba, M. Holmer, M.A. Mateo, E.T. Apostolaki, G.A. Kendrick, D. Krause-Jensen and K.J. McGlathery, 2012. Seagrass ecosystems as a globally significant carbon stock. Nature geoscience, 5: 505.   DOI
14 Green, E.P., F.T. Short and T. Frederick, 2003. World atlas of seagrasses. Univ of California Press, Berkely, 298 pp.
15 Infantes, E., J. Terrados, A. Orfila, B. Canellas and A. Alvarez-Ellacuria, 2009. Wave energy and the upper depth limit distribution of Posidonia oceanica. Bot. Mar., 52: 419-427.
16 Kim, K., J.-K. Choi, J.-H. Ryu, H.J. Jeong, K. Lee, M.G. Park and K.Y. Kim, 2015. Observation of typhoon-induced seagrass die-off using remote sensing. Estuar. Coast. Shelf Sci., 154: 111-121.   DOI
17 Koch, E.W., J.D. Ackerman, J. Verduin and M. van Keulen, 2007. Fluid dynamics in seagrass ecology-from molecules to ecosystems. In: Seagrasses: biology, ecology and conservation, edited by Larkum, A.W.D., R.J. Orth and C.M. Duarte, Springer, The netherlands, pp. 193-225.
18 Kritzer, J.P., M.-B. DeLucia, E. Greene, C. Shumway, M.F. Topolski, J. Thomas-Blate, L.A. Chiarella, K.B. Davy and K. Smith, 2016. The importance of benthic habitats for coastal fisheries. Bioscience, 66: 274-284.   DOI
19 Lee, K.-S., S.H. Kim and Y.K. Kim, 2018. Current Status of Seagrass Habitat in Korea. In: The Wetland Book: II: Distribution, Description, and Conservation, edited by C.M. Finlayson, G.R. Milton, R.C. Prentice and N.C. Davidson. Springer, The netherlands, pp. 1589-1596.
20 Lee, K.-S., J.-I. Park, Y.K. Kim, S.R. Park and J.-H. Kim, 2007a. Recolonization of Zostera marina following destruction caused by a red tide algal bloom: the role of new shoot recruitment from seed banks. Mar. Ecol. Prog. Ser., 342: 105-115.   DOI
21 Lee, K.-S., S.R. Park and J.-B. Kim, 2005. Production dynamics of the eelgrass, Zostera marina in two bay systems on the south coast of the korean peninsula. Mar. Biol., 147: 1091-1108.   DOI
22 Lee, K.-S., S.R. Park and Y.K. Kim, 2007b. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: A review. J. Exp. Mar. Biol. Ecol., 350: 144-175.   DOI
23 Lee, S.Y., C.J. Kwon, T.J. Kim, Y.B. Suh and C.I. Choi, 1999. Morphological examination of Zostera asiatica Miki (Zosteraceae) from various habitats. Korean J. Environ. Biol, 17: 504-512.
24 Kentula, M.E. and C.D. McIntire, 1986. The autecology and production dynamics of eelgrass (Zostera marina L.) in netarts bay, Oregon. Estuaries, 9: 188.   DOI
25 Maxwell, K. and G.N. Johnson, 2000. Chlorophyll flouorescence-a practical guide. J. Exp. Bot., 51: 659-668.   DOI
26 Mcleod, E., G.L. Chmura, S. Bouillon, R. Salm, M. Bjork, C.M. Duarte, C.E. Lovelock, W.H. Schlesinger and B.R. Silliman, 2011. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering $CO_2$. Front. Ecol. Environ., 9: 552-560.   DOI
27 Moseby, K.E., A. Daniels, V. Duri, W. Tropa, S. Welma, A. Bero and K. Soapi, 2020. Community-based monitoring detects catastrophic earthquake and tsunami impacts on seagrass beds in the Solomon Islands. Mar. Pollut. Bull., 150: 110444.   DOI
28 Nordlund, L.M., E.W. Koch, E.B. Barbier and J.C. Creed, 2016. Seagrass ecosystem services and their variability across genera and geographical regions. PLoS One, 11: e0163091.   DOI
29 Park, J.-I., J.-H. Kim and S.H. Park, 2016a. Growth dynamics of the deep-water asian eelgrass, Zostera asiatica, in the eastern coastal waters of Korea. Ocean Sci. J., 51: 613-625.   DOI
30 O'Brien, K.R., M.P. Adams, A.J. Ferguson, J. Samper-Villarreal, P.S. Maxwell, M.E. Baird and C. Collier, 2018. Seagrass resistance to light deprivation: Implications for resilience. In: Seagrasses of Australia, edited by Larkum A., Kendrick G., Ralph P., Springer, Cham, pp. 287-311.
31 Park, J.-I., Y.K. Kim, S.R. Park, J.-H. Kim, Y.-S. Kim, J.-B. Kim, P.-Y. Lee, C.-K. Kang and K.-S. Lee, 2005. Selection of the optimal transplanting method and time for restoration of Zostera marina habitats. Algae, 20(4): 379-388.   DOI
32 Li, W.-T., Y.K. Kim, J.-I. Park, X.-m. Zhang, G.-Y. Du and K.-S. Lee, 2014. Comparison of seasonal growth responses of Zostera marina transplants to determine the optimal transplant season for habitat restoration. Ecol. Eng., 71: 56-65.   DOI
33 Park, J.-I. and K.-S. Lee, 2009. Peculiar growth dynamics of the surfgrass Phyllospadix japonicus on the southeastern coast of Korea. Mar. Biol., 156: 2221-2233.   DOI
34 Park, J.-I., W. Li, J.-B. Kim and K.-S. Lee, 2009. Changes in productivity and morphological characteristics of Zostera marina transplants. The Sea, 14: 41-47.
35 Park, S.R., S. Kim, Y.K. Kim, C.-K. Kang and K.-S. Lee, 2016b. Photoacclimatory responses of Zostera marina in the intertidal and subtidal zones. PLoS One, 11: e0156214.   DOI
36 Parsons, T., Y. Maita and C.M. Lalli, 1984. A manual of chemical and biological methods for seawater analysis. pergamon press.
37 Phandee, S. and P. Buapet, 2018. Photosynthetic and antioxidant responses of the tropical intertidal seagrasses Halophila ovalis and Thalassia hemprichii to moderate and high irradiances. Bot. Mar., 61: 247-256.   DOI
38 Potouroglou, M., J.C. Bull, K.W. Krauss, H.A. Kennedy, M. Fusi, D. Daffonchio, M.M. Mangora, M.N. Githaiga, K. Diele and M. Huxham, 2017. Measuring the role of seagrasses in regulating sediment surface elevation. Scientific reports, 7: 1-11.   DOI
39 Phillips, R.C. and S.W. Echeverria, 1990. Zostera asiatica Miki on the Pacific coast of North America. Pac. Sci., 44(2): 130-134.
40 Platt, T., C.L. Gallegos and W.G. Harrison, 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J. Mar. Res., 38: 687-701.
41 Ralph, P., M.J. Durako, S. Enriquez, C. Collier and M. Doblin, 2007. Impact of light limitation on seagrasses. J. Exp. Mar. Biol. Ecol., 350: 176-193.   DOI
42 Ralph, P.J. and M.D. Burchett, 1995. Photosynthetic responses of the seagrass Halophila ovalis (R. Br.) Hook. f. to high irradiance stress, using chlorophyll a fluorescence. Aquat. Bot., 51: 55-66.   DOI
43 Rivers, D.O. and F.T. Short, 2007. Effect of grazing by Canada geese Branta canadensis on an intertidal eelgrass Zostera marina meadow. Mar. Ecol. Prog. Ser., 333: 271-279.   DOI
44 Ruiz-Frau, A., S. Gelcich, I. Hendriks, C.M. Duarte and N. Marba, 2017. Current state of seagrass ecosystem services: Research and policy integration. Ocean Coast. Manage., 149: 107-115.   DOI
45 Sandoval-Gil, J., A. Alexandre, R. Santos and V.F. Camacho-Ibar, 2016. Nitrogen uptake and internal recycling in Zostera marina exposed to oyster farming: Eelgrass potential as a natural biofilter, Estuaries and Coasts. 39: 1694-1708.   DOI
46 Sharon, Y., O. Levitan, D. Spungin, I. Berman-Frank and S. Beer, 2011. Photoacclimation of the seagrass Halophila stipulacea to the dim irradiance at its 48-meter depth limit. Limnol. Oceanogr., 56: 357-362.   DOI
47 Tanaka, N., S. Akaike, M. Ishii, R. Ishikawa, H. Ito, T. Kudo, D. Muraoka, A. Oshino, M. Saigusa and S. Urabe, 2009. Distribution of Zostera species in Japan. II. Zostera asiatica Miki, Z. caespitosa Miki and Z. caulescens Miki (Zosteraceae). Bull. Natl. Mus. Nat. Sci. Ser. B., 35: 211-218.
48 Shi, Y., H. Fan, X. Cui, L. Pan, S. Li and X. Song, 2010. Overview on seagrasses and related research in China. Chin. J. Oceanol. Limnol., 28: 329-339.   DOI
49 Short, F., T. Carruthers, W. Dennison and M. Waycott, 2007. Global seagrass distribution and diversity: A bioregional model. J. Exp. Mar. Biol. Ecol., 350: 3-20.   DOI
50 Short, F.T., 1987. Effects of sediment nutrients on seagrasses: Literature review and mesocosm experiment. Aquat. Bot., 27: 41-57.   DOI
51 Ralph, P.J. and R. Gademann, 2005. Rapid light curves: A powerful tool to assess photosynthetic activity. Aquat. Bot., 82: 222-237.   DOI
52 Unsworth, R.K., R. Ambo-Rappe, B.L. Jones, Y.A. La Nafie, A. Irawan, U.E. Hernawan, A.M. Moore and L.C. Cullen-Unsworth, 2018. Indonesia's globally significant seagrass meadows are under widespread threat. Sci. Total Environ., 634: 279-286.   DOI
53 Unsworth, R.K., L.M. Nordlund and L.C. Cullen-Unsworth, 2019. Seagrass meadows support global fisheries production. Conservation Letters, 12: e12566.   DOI
54 Vacchi, M., M. Montefalcone, C.N. Bianchi, C. Morri and M. Ferrari, 2010. The influence of coastal dynamics on the upper limit of the Posidonia oceanica meadow. Mar. Ecol., 31: 546-554.   DOI
55 Watanabe, M., M. Nakaoka and H. Mukai, 2005. Seasonal variation in vegetative growth and production of the endemic japanese seagrass Zostera asiatica: A comparison with sympatric Zostera marina. Bot. Mar., 48: 266-273.
56 Wyllie-Echeverria, S. and J. Ackerman, 2003. The Pacific Coast of North America. In: World atlas of seagrasses, edited by Green, E.P., Short, F.T., University of California Press, Berkeley, pp. 199-206.
57 Waycott, M., C.M. Duarte, T.J. Carruthers, R.J. Orth, W.C. Dennison, S. Olyarnik, A. Calladine, J.W. Fourqurean, K.L. Heck and A.R. Hughes, 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci., 106: 12377-12381.   DOI
58 Webb, W.L., M. Newton and D. Starr, 1974. Carbon dioxide exchange of Alnus Rubra. Oecologia, 17: 281-291.   DOI
59 Whippo, R., N.S. Knight, C. Prentice, J. Cristiani, M.R. Siegle and M.I. O'Connor, 2018. Epifaunal diversity patterns within and among seagrass meadows suggest landscape-scale biodiversity processes. Ecosphere, 9: e02490.   DOI
60 Thomson, J.A., D.A. Burkholder, M.R. Heithaus, J.W. Fourqurean, M.W. Fraser, J. Statton and G.A. Kendrick, 2015. Extreme temperatures, foundation species, and abrupt ecosystem change: an example from an iconic seagrass ecosystem. Glob. Change Biol. 21: 1463-1474.   DOI