DOI QR코드

DOI QR Code

University students' efficacy in real-time online class as alternative methodology due to Corona virus(COVID-19) events

코로나 바이러스(COVID-19) 사태로 인한 대체 방법으로서의 실시간 온라인 수업 참여에 대한 대학생의 효능감

  • 백종남 (우석대학교 특수교육과)
  • Received : 2020.08.19
  • Accepted : 2020.11.20
  • Published : 2020.11.28

Abstract

This study was designed to find out the efficacy of college students' lecture participation in online real-time lectures conducted at university due to the Corona virus events. Participants in this study are 701 students attending the W University in the J region and participating in real-time online lectures. The tools of this study consisted of four factors: interaction, learning improvement, adaptation, and accessibility. The results of this study are as follows: First, accessibility is the highest efficacy among college students' real-time online lectures participation and interaction is the lowest. Second, the efficacy of real-time online lecture participation of university students differed according to gender, grade, major, and access devices. This study is meaningful in that it confirmed the applicability of real-time online teaching method due to corona virus and confirmed the applicability of real-time online teaching as a method to prepare for the arrival of full-scale distance education in the post-Corona era. Lastly, it was suggested that the online class management method and support for each college major reflect the changes of the times.

이 연구는 코로나 바이러스 사태로 인해 국내 대학에서 실시한 온라인 실시간 수업에 대해 대학생의 수업 참여 효능감이 어떠한지 알아보고자 기획하였다. 이 연구의 참여자는 J 지역 한 대학교에 재학 중이고 실시간 온라인 수업에 참여한 경험이 있는 701명 대학생이다. 이 연구의 도구는 상호작용, 학습향상, 수업적응, 접근성 등 4 영역으로 구성하였다. 연구 결과는 다음과 같다. 첫째, 대학생의 실시간 온라인 수업 참여의 효능감은 접근성이 가장 높고 상호작용이 가장 낮았다. 둘째, 대학생의 실시간 온라인 수업 참여 효능감은 성별, 학년, 전공계열, 접근 도구에 따라 차이가 나타났다. 이 연구는 코로나 바이러스로 인한 실시간 온라인 수업의 활용성을 점검하고, 포스트(post) 코로나 시대 본격적인 원격교육의 도래를 대비하는 방법으로서 실시간 온라인 수업의 적용 가능성을 확인하였다는 데 그 의미가 있다. 마지막으로 시대의 변화를 반영한 대학 전공별 온라인 수업의 운영 방식 및 지원의 고도화를 제언하였다.

Keywords

References

  1. T. H. Gwon. (2020. 3. 16). Professor and student confusion due to college online lecture server 'down' on the first day of class. SBS News, 2020. 3 .16, https://news.sbs.co.kr/news/endPage.do?news_id=N1005700152
  2. T. Irani, C. Scherler, M. Harrington, & R. Telg. (2000, December). Overcoming barriers to learning in distance education: The effects of personality type and course perceptions on student performance. In Proceedings of the 27th Annual National Agricultural Education Research Conference.
  3. J. Baek, Y. Baek, S. Kim, & S. Choi. (2020). Teaching competencies of university professors in future society. Journal of the Korea Convergence Society, 11(6), 349-357. DOI: 10.15207/JKCS.2020.11.6.349
  4. Munhwa.com. (2020. 5. 4.). 19 "New Trends" in the "Post Corona 19 Era". Munhwa.com, 2020. 5. 17, http://www.munhwa.com/news/view.html?no=2020050401031442000001
  5. M. H. Kim. (2020). Development of learning motivation measurement in e-learning. Master's dissertation. Korea National Open University, Seoul.
  6. H. Y. Park, & K. R. Kang. (2001). Development of classroom lesson-directed concentration model. Educational Research Journal, 5, 127-156.
  7. H. Lee, S. H. Park, & J. Jin. (2019). Effects of real-time online team teaching interpretation course on perception and interpretation ability. Multimedia-Assisted Language Learning, 22(4), 256-274.
  8. N. H. Gwon. (2018). A study on the real-time bidirectional education system for cyber university: Focusing on the real-time bidirectional lecture screen UI. Master's dissertation. Kookmin University, Seoul.
  9. C. J. Bonk & Ke Zhang. (2006). Introducting the R2D2 Model: Online learning for the diverse learners of this world. Distance Education, 27(2), 249-264. DOI: 10.1080/01587910600789670
  10. K. W. Lam, A. Hassan, T. Sulaiman, & N. Kamarudin. (2018). Evaluating the face and content validity of an instructional technology competency instrument for university lectures in Malaysia. International Journal of Academic Research in Business and Social Sciences, 8(5), 367-385. DOI: 10.6007/IJARBSS/v8-i5/4108
  11. A. Bhargava, A. Kirova-Petrova, & S. McNair. (1999). Computers, gender bias, and young children. Information Technology in Childhood Education Annual, 1, 263-274.
  12. L. Shashaani. (1997). Gender differences in computer ttitudes and use among college students. Journal of Educational Computing Research, 16(1), 37-51. DOI: 10.2190/Y8U7-AMMA-WQUT-R512
  13. P. Schumacher & J. Morahan-Martin. (2001). Gender, internet and computer attitudes and experiences. Computers in Human Behavior, 17(1), 95-110. DOI: 10.1016/S0747-5632(00)00032-7
  14. A. Padilla-Melendez, A. R. del Aguila-Obra, & A. Garrido-Moreno. (2013). Perceived playfulness, gender differences and technology acceptance model in a blended learning scenario. Computers & Education, 63, 306-317. DOI: 10.1016/j.compedu.2012.12.014
  15. M. M. Handelsman, W. L. Briggs, N. Sullivan, & A. Towler. (2005). A measure of college student course engagement. The Journal of Educational Research, 98(3), 184-191. DOI: 10.3200/JOER.98.3.184-192
  16. J. Baek. (2020). Path model for presence factors affecting expectations and concerns of using virtual simulation in special education. Journal of Digital Convergence, 18(2), 475-482. DOI: 10.14400/JDC.2020.18.2.475
  17. D. Norman. (2013). The design of everyday things: Revised and expanded edition. Basic books.