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DIRECT SUM FOR BASIC COHOMOLOGY OF
CODIMENSION FOUR TAUT RIEMANNIAN FOLIATION

JIURU ZHOU

ABSTRACT. We discuss the decomposition of degree two basic cohomol-
ogy for codimension four taut Riemannian foliation according to the holo-
nomy invariant transversal almost complex structure J, and show that J
is C'*° pure and full. In addition, we obtain an estimate of the dimension
of basic J-anti-invariant subgroup. These are the foliated version for the
corresponding results of T. Draghici et al. [3].

1. Introduction

In order to study S. K. Donaldson’s tamed to compatible question [2], T.-J.
Li and W. Zhang [7] defined two subgroups H} (M), H (M) of the real de-
gree 2 de Rham cohomology group H?(M;R) for a compact almost complex
manifold (M, J). They are the sets of cohomology classes which can be rep-
resented by J-invariant and J-antiinvariant real 2-forms respectively. Later,
T. Draghici, T.-J. Li and W. Zhang showed in [3] that in dimension four

H*(M;R) = Hj (M) & Hj (M),

and they call such almost complex structure J to be C°°-pure and full. This is
specifical for four dimension, since A. Fino and A. Tomassini’s Example 3.3 in
[4] gives a six dimensional almost complex manifold (M, .J) with J being not
C*-pure, and higher dimensional non-C*°-pure examples can be obtained by
producting it with another almost complex manifold (see Remark 2.7 in [3]). It
becomes nature to ask when will the almost complex structure be C*°-pure and
full on higher dimension. This article lays the groundwork for the case in which
the higher dimensional manifold admits a codimension four taut Riemannian
foliation F. The main result is Theorem 4.1 which basically says a transversal
almost complex structure J on a codimension four taut Riemannian foliated
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manifold satisfying §(V)J =0, ¥V V € T'TF is C*-pure and full in the sense
of Definition 4.

The structure of this article is the following: Section 2 are notions of trans-
verse structures, basic forms, characteristic form and filtrations needed later.
We consider the compatibility of transversal almost complex structure with
a taut Riemannian metric in Section 3. After these preliminaries, basic J-
(anti)invariant cohomology groups naturally come out and so is C°*°-pureness
and fullness of J. After some lemmas similar to those in [3], we are able to
proof the decomposition of the real degree 2 de Rham cohomology group in Sec-
tion 4. The last section provides bounds on the dimension of J-(anti)invariant
cohomology groups.

2. Taut Riemannian foliation

Let’s first recall some definitions and results in foliations, the below in this
section is referred to [9]. Let M be a closed oriented smooth manifold of
dimension n = p+ ¢ endowed with a codimension ¢q foliation F. The integrable
subbundle TF C TM is given by vectors tangent to plaques, then we further
have the rank ¢ normal bundle defined as the quotient bundle Q@ = TM/TF
and the projection

T TM — @
Y = a(Y)

denoted by Y = 7(Y).

Define the I'T' F-action on I'Q as

0(V)s=[V,Ys] for VelTF, selQ,

where Y, € I'TM is any choice with Y, = s. It can be checked that the
definition 8(V)s is independent of the choice of Ys.

Consider a Riemannian metric g = grr ® grr. on M splitting T'M orthog-
onally as TM = TF & TF*, which means there is a bundle map o : Q =Y
TF+ C TM splitting the exact sequence

0—->TF—>TM — Q — 0,

i.e., satisfying m o o=identity. This induces a metric on @ by go = o grrr,
then the splitting map o : (Q,g9q) — (TF*, grr1) is a metric isomorphism.

Suppose VM is the Levi-Civita connection induced by the Riemannian met-
ric g on M. For s € I'Q, define

Vs 4 T [X,0(s)] for X e I'TF,
X8= T (V¥o(s)) for X € TTF,

then V is an adapted connection in ), which means V restricting along T F is
the partial Bott connection.



CODIMENSION FOUR TAUT RIEMANNIAN FOLIATION 1503

Consider the @Q-valued bilinear form on T'F, i.e., o : TF @ TF — Q given
by
aU,V) =7 (V}V) for UV eITF.
A calculation shows for s € I'Q,
(1) O(Y)grr) (U, V) = =29(Y, (U, V).
The Weingarten map W (s) : TF — T'F is defined by
go(a(U,V),s) = gW(s)U,V).

Then TrW € I'Q*, and it can be extended to a 1-form x € QY(M) by setting
k(V) =0 for V € T'TF, where we have used the identification TF+ =2 Q. We
call k¥ the mean curvature 1-form of F on (M, g).

Recall that a Riemannian foliation is a foliation F with a holonomy invariant
transversal metric gg on @, i.e.,

0(V)gg =0,V V eTTF.

The metric g on (M, F) is called bundle-like if the induced metric gg is
holonomy invariant, i.e., 8(V)gg = 0 for all V € I'TF, and a Riemannian
foliation F is called taut if there exists a bundle-like metric for which the mean
curvature 1-form x = 0.

A differential form o € Q7(M) is basic, if
i(V)a=0, 6(V)a,VV €eT'TF.

Denote by Qf; = Qp(F) the set of all basic forms, and the exterior differential
dp = d|q,. By Cartan’s magic formula, it can be checked that (Q%,dp) forms
a sub-complex of the de Rham complex (Q*,d). The corresponding cohomology

Hp(F) = Hp(F;R)
is called the basic cohomology of F.

If TF is oriented, the foliation F with dimension p is then said to be tan-
gentially oriented. The p-form yx# defined by

XF (Vi Yy) = det (g (Vi By)yy ) ¥ Vi Y, € T,

is called the characteristic form of F, where {E1, E», ..., E,} is a local oriented
orthonormal frame of T'F.

Consider the multiplicative filtration of the de Rham complex Q* = Q*(M)
as follows

Fram={aeQ™ |i(V1) - i(Vi—ry1)a=0for Vi,..., Vi1 € TTF}.

Obviously,

FOQ™ = Q™ and F™HQ™ =0.

Furthermore, for the foliation (M, F), we have

(2) FIHO™ =0 (g = codim F).
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3. Holonomy invariant transversal almost complex structure

If the foliation F is of even codimension, and there exists almost complex
structure J on @, i.e., an endomorphism J : @ — @ such that J? = —Idg,
then extend J onto T'M by setting JX = 0 for X € T'F. Such J is called the
transversal almost complex structure.

Lemma 3.1. For an even codimensional Riemannian foliation (M, F) with a
taut Riemannian metric g = grr @© grry, if there exists a transversal almost
complex structure J satisfying 0(V)J =0 for any V € TTF (we call such J to
be holonomy invariant), then the new metric g; defined by

(X,Y) = grr(X,Y) for X, Y e I'TF
I )= grri (X, Y) + grra (JX,JY)  for X, Y e TTFL

is also taut.
Proof. Since 8(V)J =0 for any V € I'T'F and g is bundle-like,

(0(V)g91.0)(s.8") = (0(V)gq)(s,s") + (0(V)gq)(Js, Js') = 0,
i.e., gy is also bundle-like.
For the tautness part, let e, ...,e, be an orthonormal basis of T, M such
that e1,...,e, € TF,and epyq,...,e, € T]:wl. Then by (1), we have the mean
curvature 1-form x for g,

= ZQQ (Oé (61‘, 67;) 75)
= _% Z 0(s)grr) (es,€i),

which shows that x is independent of gq.
We denote by x; the mean curvature 1-form with respect to gs. Since g is
taut, x vanishes, and so is k7, i.e., gy is also taut. O

In the sequel, we still denote this g; by g, and call the taut Riemannian
metric g compatible with J. In this case, define the 2-form F(-,-) = g(J-,"),
then we have that for any V € I'T'F,

iW(V)F =0,
and
[O(V)F](s1,82) =[0(V)g](Js1,82) =0, V 51,52 € Q.

Hence, F is a basic 2-form, and (F, g, J, F) is called a transversal almost Her-
mitian structure.



CODIMENSION FOUR TAUT RIEMANNIAN FOLIATION 1505

4. C*°-pure and full

For an even codimensional Riemannian foliation F on M endowed with a
transversal almost complex structure J satisfying 6(V)J = 0, V V € TF,
denote by A% the bundle of real basic 2-forms. Since 8(V)J =0,V V € TF,
we have a well-defined action of J on A% by:

J: AL — A%
al )= a(J, J).
Then by the formula:

al,,) =

we get a splitting

O‘('v')+a(J"J') a('v')_a(J'aj')
2 + 2 ’

AL =AT @ A7,
where AJ} is the bundle of J-invariant basic 2-forms, and A7 is the bundle of
J-anti-invariant basic 2-forms.
Let Q% be the space of basic 2-forms on M, Q7 (Q7) the space of J-invariant
(J-anti-invariant) basic 2-forms.

Definition. Let Z% be the space of basic closed 2-forms on M, and let Zjﬁ =
ZZn Q? Define

H7(F) = {a€ HE(F;R) | 3a € 27 such that [o] = a},
and the dimension of Hf(]—" ) are denoted by h? respectively.

It is obvious that
Hj(F)+ Hj (F) C HE(F;R).

Definition. J is said to be C*-pure if H} (F) N H; (F) = 0, and is said
to be C>®-full if H} (F) + H; (F) = H%(F;R). J is C*®-pure and full if
Hj(F) & H, (F) = HE(FiR).

The main result is the following:

Theorem 4.1. Given a codimension four taut Riemannian foliation F on
a closed smooth manifold M, if J is a transversal almost complex structure
satisfying O(V)J =0 for any V € T'TF, then J is C*°-pure and full.

Remark 4.2. The condition that §(V)J = 0 for any V € I'T'F seems to be
necessary. One of the reason is we need this condition to guarantee .J preserves
basic 2-forms. The other is that for a taut metric, we can easily construct a J
compatible taut metric and the corresponding transversal fundamental 2-form
will be a basic form.

Remark 4.3. For a K-contact manifold (M,&,n, ¢, g), we have proved that ¢
is C*°-pure and full [10]. For the characteristic foliation F¢, g is taut and
0(€)¢ = 0, so this can be considered as a special case of Theorem 4.1.
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In order to prove Theorem 4.1, we do some preparation. Let g be a bundle-
like metric inducing gg on Q. Define the Hodge star operator:

F: Q(F) = QL (F)
as follows:
Fa = (=P % (@ A xF).
The relation between * and the Hodge star operator * with respect to g is
[9]
*a = *a A\ XF,

where x r is the characteristic p-form of F defined in Section 2.
The scalar product in Q% (F) is defined by

<aa/6>B :/Ma/\gﬂ/\xfa

which is just the restriction of the usual scalar product on Q" (M) to the sub-
space Q% (F) [9].

Define the formal adjoint 65 : Qp(F) — Q5 '(F) of dg =d: Qf Y(F) —
Q(F) by

<dBa75>B = <a’ 6BB>B :
It was shown in [6,9] that, on Qf(F)
6p = (1)1 TVHE (dp — kA) 7.
Define the basic Laplacian
Ap =dpép + dpdp,
then set
H'5(F) = {the harmonic basic r-forms w | Apw = 0}.
We have the following Theorem 7.22 in [9].

Theorem 4.4. Let F be a transversally oriented Riemannian foliation on a
closed manifold (M,g). Assume g to be bundle-like with k € QL (F). Then
there is a decomposition into mutually orthogonal subspaces

Of ®2imdp @ imdp & Hy
with finite-dimensional H.

Remark 4.5. The condition x € QL (F) can be removed by the basic decompo-
sition of general mean curvature 1-form, see [8].

When the taut foliation F has codimension ¢ = 4, we have %2 =id on A2Q*,
so we get a decomposition

A2Q* _ A+Q* @A_Q*,
where A* are the +1-eigenspace of . Suppose Q§ are the space of sections of
A*Q*, and denote by at, o~ the selfdual, anti-selfdual components of a basic



CODIMENSION FOUR TAUT RIEMANNIAN FOLIATION 1507

2-form «. Furthermore, we have A% = %*Ap (note that if kK # 0, Ap and *
do not commute). Hence,

3) H*(F,R) = Hp(F) = HE(F) & Hp(F),

and we denote the dimension of H%(F), HE(F), Hp(F) by b%, bf, by re-
spectively.

For a codimension four transversal almost Hermitian manifold (M, F, J, g,
F), we have the following relation
(4) A =RF oA, Af, =RF®AJ;

+AAF — - _
AFNAy, =REA;NA, =0,

Hence, similar to [3], we have the following two lemmas:

Lemma 4.6. Ifa € QE and o = ap +dO+6V is its basic Hodge decomposition,
then (d0)5; = (V)5 and (d9)5 = —(0W) 5. In particular, the basic 2-form

a—2(dh)f =
is harmonic and the 2-form
a+2(df)g = ap +2d6
is closed.

Lemma 4.7. Let (MP*4 F, g, J, F) be a closed codimension four taut transver-
sal almost Hermitian manifold. Then Z; C M/ , and Z; C H is bijective.

Furthermore, H; = Z; = ’H;QFL.

9Q’

With the above preparation, we can present the proof of the main result.

Proof of Theorem 4.1. Let g be the J-compatible metric, and F' be the basic
2-form. If a € Hf (F)NH; (F), let o/ € ZF, " € Z7 be the representative
for a. Then see page 39 in [9],

dxr + KA xF = @o € F2QPFL

Hence, on a codimension four foliation (M, F), for basic 1-form v and basic
2-form o, vy Ao’ A ¢y € FPQPT! = 0 vanishes. Therefore, by integration by
parts, we have

0—/ o N Axr
M

/ +dny /\a AXF
M

/a % /\Xf+/ dgy AN NxF
M M

/a A%’ /\Xf+/ 'y/\dBa"/\Xf+/ yAa Ndxr
M M M
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:/ |a”|§ dvol+/ yAQ A (po— K AXF)
M M

:/ la”|2 dvol.
[

Hence, o’ = 0, i.e., a = 0, that’s to say H} (F) N H; (F) =0.
The proof of fullness part is technically almost the same as the proof of
Theorem 2.3 in [3]. O

D. Dominguez’s remarkable theorem [1] says that for a Riemannian foliation
F on a closed manifold, there always exists a bundle-like metric for F such
that the mean curvature form « is a basic 1-form. F. Kamber and Ph. Tondeur
shows £ should be closed [5]. Furthermore, if [k] € Hg(F) is trivial, then by a
suitable conformal change to grr, the bundle-like metric g can be modified to
be a taut metric [5]. Since we have an injective map
Hpy(F) — H'(M),

closed and simply connected Riemannian foliation is always taut [9]. Hence,
we have the following corollary:

Corollary 4.8. For a codimension four Riemannian foliation F on a closed
and simply connected smooth manifold M, if J is a transversal almost complex
structure satisfying 6(V)J =0 for any V € I'TF, then J is C™-pure and full.

5. Bounds on hf
Under the condition of Theorem 4.1 and by (3), we have
R +hy =08 = bk + by
Furthermore, by relations (4), the following inequalities holds:
(5) hy >bp, hy <bf.
This can be strengthened as follows:

Lemma 5.1. Let (M, F,g,J, F) be a closed codimension four almost Hermitian
taut Riemannian foliation. Assume that the harmonic part Fy, of the transversal
Hodge decomposition of F is not identically zero. Then

hy >bp+1, hy <bf—1.

Proof. Let F = Fy + df + ¥ be the transversal Hodge decomposition of F,
then F'+2(df)~ is a closed J-invariant basic 2-form, and [F}, +2df] € HfNHg
is nontrivial since F}, is not identically zero. ([

A more specific case is when F' is closed, i.e., the manifold M in Lemma 5.1
is transversal almost Kéahler, we let w = F.

Theorem 5.2. If (M, F,g, J,w) is taut transversal almost Kihler of codimen-
sion four, then
Ky >bg+1, hy <bf—1.
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Proof. Since g is taut, *A = A%. Hence, dw = 0 and w € Q; induces that
dpw = 0, i.e., w is basic harmonic itself. O
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