DIRECT SUM FOR BASIC COHOMOLOGY OF CODIMENSION FOUR TAUT RIEMANNIAN FOLIATION

Jiuru Zhou

Abstract

We discuss the decomposition of degree two basic cohomology for codimension four taut Riemannian foliation according to the holonomy invariant transversal almost complex structure J, and show that J is C^{∞} pure and full. In addition, we obtain an estimate of the dimension of basic J-anti-invariant subgroup. These are the foliated version for the corresponding results of T. Draghici et al. [3].

1. Introduction

In order to study S. K. Donaldson's tamed to compatible question [2], T.-J. Li and W. Zhang [7] defined two subgroups $H_{J}^{+}(M), H_{J}^{-}(M)$ of the real degree 2 de Rham cohomology group $H^{2}(M ; \mathbb{R})$ for a compact almost complex manifold (M, J). They are the sets of cohomology classes which can be represented by J-invariant and J-antiinvariant real 2 -forms respectively. Later, T. Draghici, T.-J. Li and W. Zhang showed in [3] that in dimension four

$$
H^{2}(M ; \mathbb{R})=H_{J}^{+}(M) \oplus H_{J}^{-}(M)
$$

and they call such almost complex structure J to be C^{∞}-pure and full. This is specifical for four dimension, since A. Fino and A. Tomassini's Example 3.3 in [4] gives a six dimensional almost complex manifold (M, J) with J being not C^{∞}-pure, and higher dimensional non- C^{∞}-pure examples can be obtained by producting it with another almost complex manifold (see Remark 2.7 in [3]). It becomes nature to ask when will the almost complex structure be C^{∞}-pure and full on higher dimension. This article lays the groundwork for the case in which the higher dimensional manifold admits a codimension four taut Riemannian foliation \mathcal{F}. The main result is Theorem 4.1 which basically says a transversal almost complex structure J on a codimension four taut Riemannian foliated

[^0]manifold satisfying $\theta(V) J=0, \forall V \in \Gamma T \mathcal{F}$ is C^{∞}-pure and full in the sense of Definition 4.

The structure of this article is the following: Section 2 are notions of transverse structures, basic forms, characteristic form and filtrations needed later. We consider the compatibility of transversal almost complex structure with a taut Riemannian metric in Section 3. After these preliminaries, basic J (anti)invariant cohomology groups naturally come out and so is C^{∞}-pureness and fullness of J. After some lemmas similar to those in [3], we are able to proof the decomposition of the real degree 2 de Rham cohomology group in Section 4. The last section provides bounds on the dimension of J-(anti)invariant cohomology groups.

2. Taut Riemannian foliation

Let's first recall some definitions and results in foliations, the below in this section is referred to [9]. Let M be a closed oriented smooth manifold of dimension $n=p+q$ endowed with a codimension q foliation \mathcal{F}. The integrable subbundle $T \mathcal{F} \subset T M$ is given by vectors tangent to plaques, then we further have the rank q normal bundle defined as the quotient bundle $Q=T M / T \mathcal{F}$ and the projection

$$
\begin{aligned}
\pi: T M & \rightarrow Q \\
Y & \mapsto \pi(Y)
\end{aligned}
$$

denoted by $\bar{Y}=\pi(Y)$.
Define the $\Gamma T \mathcal{F}$-action on ΓQ as

$$
\theta(V) s=\overline{\left[V, Y_{s}\right]} \quad \text { for } V \in \Gamma T \mathcal{F}, s \in \Gamma Q
$$

where $Y_{s} \in \Gamma T M$ is any choice with $\bar{Y}_{s}=s$. It can be checked that the definition $\theta(V) s$ is independent of the choice of Y_{s}.

Consider a Riemannian metric $g=g_{T \mathcal{F}} \oplus g_{T \mathcal{F} \perp}$ on M splitting $T M$ orthogonally as $T M=T \mathcal{F} \oplus T \mathcal{F}^{\perp}$, which means there is a bundle map $\sigma: Q \xlongequal{\leftrightharpoons}$ $T \mathcal{F}^{\perp} \subset T M$ splitting the exact sequence

$$
0 \rightarrow T \mathcal{F} \rightarrow T M \rightarrow Q \rightarrow 0
$$

i.e., satisfying $\pi \circ \sigma=$ identity. This induces a metric on Q by $g_{Q}=\sigma^{*} g_{T \mathcal{F}^{\perp}}$, then the splitting map $\sigma:\left(Q, g_{Q}\right) \rightarrow\left(T \mathcal{F}^{\perp}, g_{T \mathcal{F}^{\perp}}\right)$ is a metric isomorphism.

Suppose ∇^{M} is the Levi-Civita connection induced by the Riemannian metric g on M. For $s \in \Gamma Q$, define

$$
\nabla_{X} s= \begin{cases}\pi[X, \sigma(s)] & \text { for } X \in \Gamma T \mathcal{F} \\ \pi\left(\nabla_{X}^{M} \sigma(s)\right) & \text { for } X \in \Gamma T \mathcal{F}^{\perp}\end{cases}
$$

then ∇ is an adapted connection in Q, which means ∇ restricting along $T \mathcal{F}$ is the partial Bott connection.

Consider the Q-valued bilinear form on $T \mathcal{F}$, i.e., $\alpha: T \mathcal{F} \otimes T \mathcal{F} \rightarrow Q$ given by

$$
\alpha(U, V)=\pi\left(\nabla_{U}^{M} V\right) \quad \text { for } U, V \in \Gamma T \mathcal{F}
$$

A calculation shows for $s \in \Gamma Q$,

$$
\begin{equation*}
\left(\theta(Y) g_{T \mathcal{F}}\right)(U, V)=-2 g(Y, \alpha(U, V)) \tag{1}
\end{equation*}
$$

The Weingarten map $W(s): T \mathcal{F} \rightarrow T \mathcal{F}$ is defined by

$$
g_{Q}(\alpha(U, V), s)=g(W(s) U, V)
$$

Then $\operatorname{Tr} W \in \Gamma Q^{*}$, and it can be extended to a 1-form $\kappa \in \Omega^{1}(M)$ by setting $\kappa(V)=0$ for $V \in \Gamma T \mathcal{F}$, where we have used the identification $T \mathcal{F}^{\perp} \cong Q$. We call κ the mean curvature 1-form of \mathcal{F} on (M, g).

Recall that a Riemannian foliation is a foliation \mathcal{F} with a holonomy invariant transversal metric g_{Q} on Q, i.e.,

$$
\theta(V) g_{Q}=0, \forall V \in \Gamma T \mathcal{F}
$$

The metric g on (M, \mathcal{F}) is called bundle-like if the induced metric g_{Q} is holonomy invariant, i.e., $\theta(V) g_{Q}=0$ for all $V \in \Gamma T \mathcal{F}$, and a Riemannian foliation \mathcal{F} is called taut if there exists a bundle-like metric for which the mean curvature 1-form $\kappa=0$.

A differential form $\alpha \in \Omega^{r}(M)$ is basic, if

$$
i(V) \alpha=0, \theta(V) \alpha, \forall V \in \Gamma T \mathcal{F} .
$$

Denote by $\Omega_{B}^{*}=\Omega_{B}^{*}(\mathcal{F})$ the set of all basic forms, and the exterior differential $d_{B}=\left.d\right|_{\Omega_{B}}$. By Cartan's magic formula, it can be checked that $\left(\Omega_{B}^{*}, d_{B}\right)$ forms a sub-complex of the de Rham complex $\left(\Omega^{*}, d\right)$. The corresponding cohomology

$$
H_{B}^{*}(\mathcal{F})=H_{B}^{*}(\mathcal{F} ; \mathbb{R})
$$

is called the basic cohomology of \mathcal{F}.
If $T \mathcal{F}$ is oriented, the foliation \mathcal{F} with dimension p is then said to be tangentially oriented. The p-form $\chi_{\mathcal{F}}$ defined by

$$
\chi_{\mathcal{F}}\left(Y_{1}, \ldots, Y_{p}\right)=\operatorname{det}\left(g\left(Y_{i}, E_{j}\right)_{i j}\right), \forall Y_{1}, \ldots, Y_{p} \in \Gamma T M
$$

is called the characteristic form of \mathcal{F}, where $\left\{E_{1}, E_{2}, \ldots, E_{p}\right\}$ is a local oriented orthonormal frame of $T \mathcal{F}$.

Consider the multiplicative filtration of the de Rham complex $\Omega^{*}=\Omega^{*}(M)$ as follows

$$
F^{r} \Omega^{m}=\left\{\alpha \in \Omega^{m} \mid i\left(V_{1}\right) \cdots i\left(V_{m-r+1}\right) \alpha=0 \text { for } V_{1}, \ldots, V_{m-r+1} \in \Gamma T \mathcal{F}\right\} .
$$

Obviously,

$$
F^{0} \Omega^{m}=\Omega^{m} \text { and } \quad F^{m+1} \Omega^{m}=0
$$

Furthermore, for the foliation (M, \mathcal{F}), we have

$$
\begin{equation*}
F^{q+1} \Omega^{m}=0 \quad(q=\operatorname{codim} \mathcal{F}) \tag{2}
\end{equation*}
$$

3. Holonomy invariant transversal almost complex structure

If the foliation \mathcal{F} is of even codimension, and there exists almost complex structure J on Q, i.e., an endomorphism $J: Q \rightarrow Q$ such that $J^{2}=-I d_{Q}$, then extend J onto $T M$ by setting $J X=0$ for $X \in T \mathcal{F}$. Such J is called the transversal almost complex structure.

Lemma 3.1. For an even codimensional Riemannian foliation (M, \mathcal{F}) with a taut Riemannian metric $g=g_{T \mathcal{F}} \oplus g_{T \mathcal{F} \perp}$, if there exists a transversal almost complex structure J satisfying $\theta(V) J=0$ for any $V \in \Gamma T \mathcal{F}$ (we call such J to be holonomy invariant), then the new metric g_{J} defined by

$$
g_{J}(X, Y)= \begin{cases}g_{T \mathcal{F}}(X, Y) & \text { for } X, Y \in \Gamma T \mathcal{F} \\ g_{T \mathcal{F}^{\perp}}(X, Y)+g_{T \mathcal{F}^{\perp}}(J X, J Y) & \text { for } X, Y \in \Gamma T \mathcal{F}^{\perp}\end{cases}
$$

is also taut.
Proof. Since $\theta(V) J=0$ for any $V \in \Gamma T \mathcal{F}$ and g is bundle-like,

$$
\left(\theta(V) g_{J, Q}\right)\left(s, s^{\prime}\right)=\left(\theta(V) g_{Q}\right)\left(s, s^{\prime}\right)+\left(\theta(V) g_{Q}\right)\left(J s, J s^{\prime}\right)=0
$$

i.e., g_{J} is also bundle-like.

For the tautness part, let e_{1}, \ldots, e_{n} be an orthonormal basis of $T_{x} M$ such that $e_{1}, \ldots, e_{p} \in T \mathcal{F}_{x}$ and $e_{p+1}, \ldots, e_{n} \in T \mathcal{F}_{x}^{\perp}$. Then by (1), we have the mean curvature 1-form κ for g,

$$
\begin{aligned}
\kappa(s)_{x} & =\operatorname{Tr} W(s)_{x} \\
& =\sum_{i=1}^{p} g\left(W(s) e_{i}, e_{i}\right) \\
& =\sum_{i=1}^{p} g_{Q}\left(\alpha\left(e_{i}, e_{i}\right), s\right) \\
& =-\frac{1}{2} \sum_{i=1}^{p}\left(\theta(s) g_{T \mathcal{F}}\right)\left(e_{i}, e_{i}\right),
\end{aligned}
$$

which shows that κ is independent of g_{Q}.
We denote by κ_{J} the mean curvature 1 -form with respect to g_{J}. Since g is taut, κ vanishes, and so is κ_{J}, i.e., g_{J} is also taut.

In the sequel, we still denote this g_{J} by g, and call the taut Riemannian metric g compatible with J. In this case, define the 2-form $F(\cdot, \cdot)=g(J \cdot, \cdot)$, then we have that for any $V \in \Gamma T \mathcal{F}$,

$$
i(V) F=0
$$

and

$$
[\theta(V) F]\left(s_{1}, s_{2}\right)=[\theta(V) g]\left(J s_{1}, s_{2}\right)=0, \forall s_{1}, s_{2} \in Q
$$

Hence, F is a basic 2-form, and (\mathcal{F}, g, J, F) is called a transversal almost Hermitian structure.

4. C^{∞}-pure and full

For an even codimensional Riemannian foliation \mathcal{F} on M endowed with a transversal almost complex structure J satisfying $\theta(V) J=0, \forall V \in T \mathcal{F}$, denote by Λ_{B}^{2} the bundle of real basic 2-forms. Since $\theta(V) J=0, \forall V \in T \mathcal{F}$, we have a well-defined action of J on Λ_{B}^{2} by:

$$
\begin{aligned}
J: \Lambda_{B}^{2} & \rightarrow \Lambda_{B}^{2} \\
\alpha(\cdot, \cdot) & \mapsto \alpha(J \cdot, J \cdot) .
\end{aligned}
$$

Then by the formula:

$$
\alpha(\cdot, \cdot)=\frac{\alpha(\cdot, \cdot)+\alpha(J \cdot, J \cdot)}{2}+\frac{\alpha(\cdot, \cdot)-\alpha(J \cdot, J \cdot)}{2}
$$

we get a splitting

$$
\Lambda_{B}^{2}=\Lambda_{J}^{+} \oplus \Lambda_{J}^{-}
$$

where Λ_{J}^{+}is the bundle of J-invariant basic 2 -forms, and Λ_{J}^{-}is the bundle of J-anti-invariant basic 2 -forms.

Let Ω_{B}^{2} be the space of basic 2 -forms on $M, \Omega_{J}^{+}\left(\Omega_{J}^{-}\right)$the space of J-invariant (J-anti-invariant) basic 2 -forms.
Definition. Let \mathcal{Z}_{B}^{2} be the space of basic closed 2-forms on M, and let $\mathcal{Z}_{J}^{ \pm}=$ $\mathcal{Z}_{B}^{2} \cap \Omega_{J}^{ \pm}$. Define

$$
H_{J}^{ \pm}(\mathcal{F})=\left\{\mathfrak{a} \in H_{B}^{2}(\mathcal{F} ; \mathbb{R}) \mid \exists \alpha \in \mathcal{Z}_{J}^{ \pm} \text {such that }[\alpha]=\mathfrak{a}\right\}
$$

and the dimension of $H_{J}^{ \pm}(\mathcal{F})$ are denoted by $h_{J}^{ \pm}$respectively.
It is obvious that

$$
H_{J}^{+}(\mathcal{F})+H_{J}^{-}(\mathcal{F}) \subseteq H_{B}^{2}(\mathcal{F} ; \mathbb{R})
$$

Definition. J is said to be C^{∞}-pure if $H_{J}^{+}(\mathcal{F}) \cap H_{J}^{-}(\mathcal{F})=0$, and is said to be C^{∞}-full if $H_{J}^{+}(\mathcal{F})+H_{J}^{-}(\mathcal{F})=H_{B}^{2}(\mathcal{F} ; \mathbb{R})$. J is C^{∞}-pure and full if $H_{J}^{+}(\mathcal{F}) \oplus H_{J}^{-}(\mathcal{F})=H_{B}^{2}(\mathcal{F} ; \mathbb{R})$.

The main result is the following:
Theorem 4.1. Given a codimension four taut Riemannian foliation \mathcal{F} on a closed smooth manifold M, if J is a transversal almost complex structure satisfying $\theta(V) J=0$ for any $V \in \Gamma T \mathcal{F}$, then J is C^{∞}-pure and full.
Remark 4.2. The condition that $\theta(V) J=0$ for any $V \in \Gamma T \mathcal{F}$ seems to be necessary. One of the reason is we need this condition to guarantee J preserves basic 2 -forms. The other is that for a taut metric, we can easily construct a J compatible taut metric and the corresponding transversal fundamental 2-form will be a basic form.
Remark 4.3. For a K-contact manifold (M, ξ, η, ϕ, g), we have proved that ϕ is C^{∞}-pure and full [10]. For the characteristic foliation \mathcal{F}_{ξ}, g is taut and $\theta(\xi) \phi=0$, so this can be considered as a special case of Theorem 4.1.

In order to prove Theorem 4.1, we do some preparation. Let g be a bundlelike metric inducing g_{Q} on Q. Define the Hodge star operator:

$$
\bar{*}: \Omega_{B}^{r}(\mathcal{F}) \rightarrow \Omega_{B}^{q-r}(\mathcal{F})
$$

as follows:

$$
\bar{*} \alpha=(-1)^{p(q-r)} *\left(\alpha \wedge \chi_{\mathcal{F}}\right) .
$$

The relation between $\not \approx$ and the Hodge star operator $*$ with respect to g is [9]

$$
* \alpha=\bar{\star} \alpha \wedge \chi_{\mathcal{F}},
$$

where $\chi_{\mathcal{F}}$ is the characteristic p-form of \mathcal{F} defined in Section 2.
The scalar product in $\Omega_{B}^{r}(\mathcal{F})$ is defined by

$$
\langle\alpha, \beta\rangle_{B}=\int_{M} \alpha \wedge \bar{*} \beta \wedge \chi_{\mathcal{F}}
$$

which is just the restriction of the usual scalar product on $\Omega^{r}(M)$ to the subspace $\Omega_{B}^{r}(\mathcal{F})[9]$.

Define the formal adjoint $\delta_{B}: \Omega_{B}^{r}(\mathcal{F}) \rightarrow \Omega_{B}^{r-1}(\mathcal{F})$ of $d_{B}=d: \Omega_{B}^{r-1}(\mathcal{F}) \rightarrow$ $\Omega_{B}^{r}(\mathcal{F})$ by

$$
\left\langle d_{B} \alpha, \beta\right\rangle_{B}=\left\langle\alpha, \delta_{B} \beta\right\rangle_{B}
$$

It was shown in $[6,9]$ that, on $\Omega_{B}^{r}(\mathcal{F})$

$$
\delta_{B}=(-1)^{q(r+1)+1} \bar{*}\left(d_{B}-\kappa \wedge\right) \bar{ж} .
$$

Define the basic Laplacian

$$
\Delta_{B}=d_{B} \delta_{B}+\delta_{B} d_{B},
$$

then set

$$
\mathcal{H}_{B}^{r}(\mathcal{F})=\left\{\text { the harmonic basic } r \text {-forms } \omega \mid \Delta_{B} \omega=0\right\}
$$

We have the following Theorem 7.22 in [9].
Theorem 4.4. Let \mathcal{F} be a transversally oriented Riemannian foliation on a closed manifold (M, g). Assume g to be bundle-like with $\kappa \in \Omega_{B}^{1}(\mathcal{F})$. Then there is a decomposition into mutually orthogonal subspaces

$$
\Omega_{B}^{r} \cong \operatorname{im} d_{B} \oplus \operatorname{im} \delta_{B} \oplus \mathcal{H}_{B}^{r}
$$

with finite-dimensional \mathcal{H}_{B}^{r}.
Remark 4.5. The condition $\kappa \in \Omega_{B}^{1}(\mathcal{F})$ can be removed by the basic decomposition of general mean curvature 1 -form, see [8].

When the taut foliation \mathcal{F} has codimension $q=4$, we have $\bar{*}^{2}=\operatorname{id}$ on $\Lambda^{2} Q^{*}$, so we get a decomposition

$$
\Lambda^{2} \mathrm{Q}^{*}=\Lambda^{+} \mathrm{Q}^{*} \oplus \Lambda^{-} \mathrm{Q}^{*}
$$

where $\Lambda^{ \pm}$are the ± 1-eigenspace of $\bar{*}$. Suppose $\Omega_{B}^{ \pm}$are the space of sections of $\Lambda^{ \pm} \mathrm{Q}^{*}$, and denote by α^{+}, α^{-}the selfdual, anti-selfdual components of a basic

2-form α. Furthermore, we have $\Delta_{B} \bar{*}=\bar{*} \Delta_{B}$ (note that if $\kappa \neq 0, \Delta_{B}$ and $\bar{*}$ do not commute). Hence,

$$
\begin{equation*}
H^{2}(\mathcal{F}, \mathbb{R})=\mathcal{H}_{B}^{2}(\mathcal{F})=\mathcal{H}_{B}^{+}(\mathcal{F}) \oplus \mathcal{H}_{B}^{-}(\mathcal{F}) \tag{3}
\end{equation*}
$$

and we denote the dimension of $\mathcal{H}_{B}^{2}(\mathcal{F}), \mathcal{H}_{B}^{+}(\mathcal{F}), \mathcal{H}_{B}^{-}(\mathcal{F})$ by $b_{B}^{2}, b_{B}^{+}, b_{B}^{-}$respectively.

For a codimension four transversal almost Hermitian manifold $(M, \mathcal{F}, J, g$, $F)$, we have the following relation

$$
\begin{align*}
& \Lambda_{J}^{+}=\mathbb{R} F \oplus \Lambda_{g_{Q}}^{-}, \Lambda_{g_{Q}}^{+}=\mathbb{R} F \oplus \Lambda_{J}^{-} \tag{4}\\
& \Lambda_{J}^{+} \cap \Lambda_{g_{Q}}^{+}=\mathbb{R} F, \Lambda_{J}^{-} \cap \Lambda_{g_{Q}}^{-}=0
\end{align*}
$$

Hence, similar to [3], we have the following two lemmas:
Lemma 4.6. If $\alpha \in \Omega_{B}^{+}$and $\alpha=\alpha_{h}+d \theta+\delta \Psi$ is its basic Hodge decomposition, then $(d \theta)_{B}^{+}=(\delta \Psi)_{B}^{+}$and $(d \theta)_{B}^{-}=-(\delta \Psi)_{B}^{-}$. In particular, the basic 2-form

$$
\alpha-2(d \theta)_{B}^{+}=\alpha_{h}
$$

is harmonic and the 2-form

$$
\alpha+2(d \theta)_{B}^{-}=\alpha_{h}+2 d \theta
$$

is closed.
Lemma 4.7. Let $\left(M^{p+4}, \mathcal{F}, g, J, F\right)$ be a closed codimension four taut transversal almost Hermitian manifold. Then $\mathcal{Z}_{J}^{-} \subset \mathcal{H}_{g_{Q}}^{+}$, and $\mathcal{Z}_{J}^{-} \subset H_{J}^{-}$is bijective. Furthermore, $H_{J}^{-}=\mathcal{Z}_{J}^{-}=\mathcal{H}_{g Q}^{+, F^{\perp}}$.

With the above preparation, we can present the proof of the main result.
Proof of Theorem 4.1. Let g be the J-compatible metric, and F be the basic 2-form. If $\mathfrak{a} \in H_{J}^{+}(\mathcal{F}) \cap H_{J}^{-}(\mathcal{F})$, let $\alpha^{\prime} \in \mathcal{Z}_{J}^{+}, \alpha^{\prime \prime} \in \mathcal{Z}_{J}^{-}$be the representative for \mathfrak{a}. Then see page 39 in [9],

$$
\mathrm{d} \chi_{\mathcal{F}}+\kappa \wedge \chi_{\mathcal{F}}=\varphi_{0} \in F^{2} \Omega^{p+1}
$$

Hence, on a codimension four foliation (M, \mathcal{F}), for basic 1-form γ and basic 2-form $\alpha^{\prime \prime}, \gamma \wedge \alpha^{\prime \prime} \wedge \phi_{0} \in F^{5} \Omega^{p+1}=0$ vanishes. Therefore, by integration by parts, we have

$$
\begin{aligned}
0 & =\int_{M} \alpha^{\prime} \wedge \alpha^{\prime \prime} \wedge \chi_{\mathcal{F}} \\
& =\int_{M}\left(\alpha^{\prime \prime}+d_{B} \gamma\right) \wedge \alpha^{\prime \prime} \wedge \chi_{\mathcal{F}} \\
& =\int_{M} \alpha^{\prime \prime} \wedge \alpha^{\prime \prime} \wedge \chi_{\mathcal{F}}+\int_{M} d_{B} \gamma \wedge \alpha^{\prime \prime} \wedge \chi_{\mathcal{F}} \\
& =\int_{M} \alpha^{\prime \prime} \wedge \bar{*} \alpha^{\prime \prime} \wedge \chi_{\mathcal{F}}+\int_{M} \gamma \wedge d_{B} \alpha^{\prime \prime} \wedge \chi_{\mathcal{F}}+\int_{M} \gamma \wedge \alpha^{\prime \prime} \wedge \mathrm{d} \chi_{\mathcal{F}}
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{M}\left|\alpha^{\prime \prime}\right|_{g}^{2} \mathrm{~d} v o l+\int_{M} \gamma \wedge \alpha^{\prime \prime} \wedge\left(\phi_{0}-\kappa \wedge \chi_{\mathcal{F}}\right) \\
& =\int_{M}\left|\alpha^{\prime \prime}\right|_{g}^{2} \mathrm{~d} \text { vol. }
\end{aligned}
$$

Hence, $\alpha^{\prime \prime}=0$, i.e., $\mathfrak{a}=0$, that's to say $H_{J}^{+}(\mathcal{F}) \cap H_{J}^{-}(\mathcal{F})=0$.
The proof of fullness part is technically almost the same as the proof of Theorem 2.3 in [3].
D. Domínguez's remarkable theorem [1] says that for a Riemannian foliation \mathcal{F} on a closed manifold, there always exists a bundle-like metric for \mathcal{F} such that the mean curvature form κ is a basic 1-form. F. Kamber and Ph. Tondeur shows κ should be closed [5]. Furthermore, if $[\kappa] \in H_{B}^{1}(\mathcal{F})$ is trivial, then by a suitable conformal change to $g_{T \mathcal{F}}$, the bundle-like metric g can be modified to be a taut metric [5]. Since we have an injective map

$$
H_{B}^{1}(\mathcal{F}) \rightarrow H^{1}(M)
$$

closed and simply connected Riemannian foliation is always taut [9]. Hence, we have the following corollary:

Corollary 4.8. For a codimension four Riemannian foliation \mathcal{F} on a closed and simply connected smooth manifold M, if J is a transversal almost complex structure satisfying $\theta(V) J=0$ for any $V \in \Gamma T \mathcal{F}$, then J is C^{∞}-pure and full.

5. Bounds on $h_{J}^{ \pm}$

Under the condition of Theorem 4.1 and by (3), we have

$$
h_{J}^{+}+h_{J}^{-}=b_{2}^{B}=b_{B}^{+}+b_{B}^{-} .
$$

Furthermore, by relations (4), the following inequalities holds:

$$
\begin{equation*}
h_{J}^{+} \geq b_{B}^{-}, h_{J}^{-} \leq b_{B}^{+} . \tag{5}
\end{equation*}
$$

This can be strengthened as follows:
Lemma 5.1. Let $(M, \mathcal{F}, g, J, F)$ be a closed codimension four almost Hermitian taut Riemannian foliation. Assume that the harmonic part F_{h} of the transversal Hodge decomposition of F is not identically zero. Then

$$
h_{J}^{+} \geq b_{B}^{-}+1, h_{J}^{-} \leq b_{B}^{+}-1 .
$$

Proof. Let $F=F_{h}+d \theta+\delta \Psi$ be the transversal Hodge decomposition of F, then $F+2(d \theta)^{-}$is a closed J-invariant basic 2-form, and $\left[F_{h}+2 d \theta\right] \in H_{B}^{+} \cap H_{B}^{-}$ is nontrivial since F_{h} is not identically zero.

A more specific case is when F is closed, i.e., the manifold M in Lemma 5.1 is transversal almost Kähler, we let $\omega=F$.
Theorem 5.2. If $(M, \mathcal{F}, g, J, \omega)$ is taut transversal almost Kähler of codimension four, then

$$
h_{J}^{+} \geq b_{B}^{-}+1, h_{J}^{-} \leq b_{B}^{+}-1 .
$$

Proof. Since g is taut, $\bar{\circledast} \Delta=\Delta \bar{*}$. Hence, $\mathrm{d} \omega=0$ and $\omega \in \Omega_{g}^{+}$induces that $\delta_{B} \omega=0$, i.e., ω is basic harmonic itself.

References

[1] D. Domínguez, Finiteness and tenseness theorems for Riemannian foliations, Amer. J. Math. 120 (1998), no. 6, 1237-1276.
[2] S. K. Donaldson, Two-forms on four-manifolds and elliptic equations, in Inspired by S. S. Chern, 153-172, Nankai Tracts Math., 11, World Sci. Publ., Hackensack, NJ, 2006. https://doi.org/10.1142/9789812772688_0007
[3] T. Draghici, T.-J. Li, and W. Zhang, Symplectic forms and cohomology decomposition of almost complex four-manifolds, Int. Math. Res. Not. IMRN 2010, no. 1, 1-17. https: //doi.org/10.1093/imrn/rnp113
[4] A. Fino and A. Tomassini, On some cohomological properties of almost complex manifolds, J. Geom. Anal. 20 (2010), no. 1, 107-131. https://doi.org/10.1007/s12220-009-9098-3
[5] F. W. Kamber and P. Tondeur, Foliations and metrics, in Differential geometry (College Park, Md., 1981/1982), 103-152, Progr. Math., 32, Birkhäuser Boston, Boston, MA, 1983.
[6] _, Duality for Riemannian foliations, in Singularities, Part 1 (Arcata, Calif., 1981), 609-618, Proc. Sympos. Pure Math., 40, Amer. Math. Soc., Providence, RI, 1983.
[7] T.-J. Li and W. Zhang, Comparing tamed and compatible symplectic cones and cohomological properties of almost complex manifolds, Comm. Anal. Geom. 17 (2009), no. 4, 651-683. https://doi.org/10.4310/CAG.2009.v17.n4.a4
[8] J. A. A. López, The basic component of the mean curvature of Riemannian foliations, Ann. Global Anal. Geom. 10 (1992), no. 2, 179-194. https://doi.org/10.1007/ BF00130919
[9] P. Tondeur, Geometry of foliations, Monographs in Mathematics, 90, Birkhäuser Verlag, Basel, 1997. https://doi.org/10.1007/978-3-0348-8914-8
[10] J. Zhou and P. Zhu, Basic cohomology group decomposition of K-contact 5-manifolds, Results Math. 71 (2017), no. 3-4, 1023-1030. https://doi.org/10.1007/s00025-016-0559-2

Jiuru Zhou
School of Mathematical Sciences
Yangzhou University
Yangzhou 225009, P. R. China
Email address: zhoujiuru@yzu.edu.cn

[^0]: Received January 7, 2020; Accepted June 4, 2020.
 2010 Mathematics Subject Classification. Primary 53D10; Secondary 53C25, 53D35.
 Key words and phrases. Riemannian foliation, basic cohomology, transversal almost complex structure.

 This work was partially financially supported by NSFC 11771377 and the Natural Science Foundation of Jiangsu Province(BK20191435).

