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DIRECT SUM FOR BASIC COHOMOLOGY OF

CODIMENSION FOUR TAUT RIEMANNIAN FOLIATION

Jiuru Zhou

Abstract. We discuss the decomposition of degree two basic cohomol-

ogy for codimension four taut Riemannian foliation according to the holo-
nomy invariant transversal almost complex structure J , and show that J

is C∞ pure and full. In addition, we obtain an estimate of the dimension
of basic J-anti-invariant subgroup. These are the foliated version for the

corresponding results of T. Draghici et al. [3].

1. Introduction

In order to study S. K. Donaldson’s tamed to compatible question [2], T.-J.
Li and W. Zhang [7] defined two subgroups H+

J (M), H−J (M) of the real de-
gree 2 de Rham cohomology group H2(M ;R) for a compact almost complex
manifold (M,J). They are the sets of cohomology classes which can be rep-
resented by J-invariant and J-antiinvariant real 2-forms respectively. Later,
T. Draghici, T.-J. Li and W. Zhang showed in [3] that in dimension four

H2(M ;R) = H+
J (M)⊕H−J (M),

and they call such almost complex structure J to be C∞-pure and full. This is
specifical for four dimension, since A. Fino and A. Tomassini’s Example 3.3 in
[4] gives a six dimensional almost complex manifold (M,J) with J being not
C∞-pure, and higher dimensional non-C∞-pure examples can be obtained by
producting it with another almost complex manifold (see Remark 2.7 in [3]). It
becomes nature to ask when will the almost complex structure be C∞-pure and
full on higher dimension. This article lays the groundwork for the case in which
the higher dimensional manifold admits a codimension four taut Riemannian
foliation F . The main result is Theorem 4.1 which basically says a transversal
almost complex structure J on a codimension four taut Riemannian foliated
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manifold satisfying θ(V )J = 0, ∀ V ∈ ΓTF is C∞-pure and full in the sense
of Definition 4.

The structure of this article is the following: Section 2 are notions of trans-
verse structures, basic forms, characteristic form and filtrations needed later.
We consider the compatibility of transversal almost complex structure with
a taut Riemannian metric in Section 3. After these preliminaries, basic J-
(anti)invariant cohomology groups naturally come out and so is C∞-pureness
and fullness of J . After some lemmas similar to those in [3], we are able to
proof the decomposition of the real degree 2 de Rham cohomology group in Sec-
tion 4. The last section provides bounds on the dimension of J-(anti)invariant
cohomology groups.

2. Taut Riemannian foliation

Let’s first recall some definitions and results in foliations, the below in this
section is referred to [9]. Let M be a closed oriented smooth manifold of
dimension n = p+ q endowed with a codimension q foliation F . The integrable
subbundle TF ⊂ TM is given by vectors tangent to plaques, then we further
have the rank q normal bundle defined as the quotient bundle Q = TM/TF
and the projection

π : TM → Q

Y 7→ π(Y )

denoted by Y = π(Y ).
Define the ΓTF-action on ΓQ as

θ(V )s = [V, Ys] for V ∈ ΓTF , s ∈ ΓQ,

where Ys ∈ ΓTM is any choice with Y s = s. It can be checked that the
definition θ(V )s is independent of the choice of Ys.

Consider a Riemannian metric g = gTF ⊕ gTF⊥ on M splitting TM orthog-

onally as TM = TF ⊕ TF⊥, which means there is a bundle map σ : Q
∼=→

TF⊥ ⊂ TM splitting the exact sequence

0→ TF → TM → Q→ 0,

i.e., satisfying π ◦ σ=identity. This induces a metric on Q by gQ = σ∗gTF⊥ ,
then the splitting map σ : (Q, gQ)→ (TF⊥, gTF⊥) is a metric isomorphism.

Suppose ∇M is the Levi-Civita connection induced by the Riemannian met-
ric g on M . For s ∈ ΓQ, define

∇Xs =

{
π [X,σ(s)] for X ∈ ΓTF ,
π
(
∇MX σ(s)

)
for X ∈ ΓTF⊥,

then ∇ is an adapted connection in Q, which means ∇ restricting along TF is
the partial Bott connection.
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Consider the Q-valued bilinear form on TF , i.e., α : TF ⊗ TF → Q given
by

α(U, V ) = π
(
∇MU V

)
for U, V ∈ ΓTF .

A calculation shows for s ∈ ΓQ,

(1) (θ(Y )gTF ) (U, V ) = −2g(Y, α(U, V )).

The Weingarten map W (s) : TF → TF is defined by

gQ(α(U, V ), s) = g(W (s)U, V ).

Then TrW ∈ ΓQ∗, and it can be extended to a 1-form κ ∈ Ω1(M) by setting
κ(V ) = 0 for V ∈ ΓTF , where we have used the identification TF⊥ ∼= Q. We
call κ the mean curvature 1-form of F on (M, g).

Recall that a Riemannian foliation is a foliation F with a holonomy invariant
transversal metric gQ on Q, i.e.,

θ(V )gQ = 0, ∀ V ∈ ΓTF .

The metric g on (M,F) is called bundle-like if the induced metric gQ is
holonomy invariant, i.e., θ(V )gQ = 0 for all V ∈ ΓTF , and a Riemannian
foliation F is called taut if there exists a bundle-like metric for which the mean
curvature 1-form κ = 0.

A differential form α ∈ Ωr(M) is basic, if

i(V )α = 0, θ(V )α,∀ V ∈ ΓTF .

Denote by Ω∗B = Ω∗B(F) the set of all basic forms, and the exterior differential
dB = d|ΩB

. By Cartan’s magic formula, it can be checked that (Ω∗B , dB) forms
a sub-complex of the de Rham complex (Ω∗, d). The corresponding cohomology

H∗B(F) = H∗B(F ;R)

is called the basic cohomology of F .
If TF is oriented, the foliation F with dimension p is then said to be tan-

gentially oriented. The p-form χF defined by

χF (Y1, . . . , Yp) = det
(
g (Yi, Ej)ij

)
,∀ Y1, . . . , Yp ∈ ΓTM,

is called the characteristic form of F , where {E1, E2, . . . , Ep} is a local oriented
orthonormal frame of TF .

Consider the multiplicative filtration of the de Rham complex Ω∗ = Ω∗(M)
as follows

F rΩm = {α ∈ Ωm | i(V1) · · · i(Vm−r+1)α = 0 for V1, . . . , Vm−r+1 ∈ ΓTF}.

Obviously,

F 0Ωm = Ωm and Fm+1Ωm = 0.

Furthermore, for the foliation (M,F), we have

(2) F q+1Ωm = 0 (q = codimF).
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3. Holonomy invariant transversal almost complex structure

If the foliation F is of even codimension, and there exists almost complex
structure J on Q, i.e., an endomorphism J : Q → Q such that J2 = −IdQ,
then extend J onto TM by setting JX = 0 for X ∈ TF . Such J is called the
transversal almost complex structure.

Lemma 3.1. For an even codimensional Riemannian foliation (M,F) with a
taut Riemannian metric g = gTF ⊕ gTF⊥ , if there exists a transversal almost
complex structure J satisfying θ(V )J = 0 for any V ∈ ΓTF (we call such J to
be holonomy invariant), then the new metric gJ defined by

gJ(X,Y ) =

{
gTF (X,Y ) for X,Y ∈ ΓTF
gTF⊥(X,Y ) + gTF⊥(JX, JY ) for X,Y ∈ ΓTF⊥

is also taut.

Proof. Since θ(V )J = 0 for any V ∈ ΓTF and g is bundle-like,

(θ(V )gJ,Q)(s, s′) = (θ(V )gQ)(s, s′) + (θ(V )gQ)(Js, Js′) = 0,

i.e., gJ is also bundle-like.
For the tautness part, let e1, . . . , en be an orthonormal basis of TxM such

that e1, . . . , ep ∈ TFx and ep+1, . . . , en ∈ TF⊥x . Then by (1), we have the mean
curvature 1-form κ for g,

κ(s)x = TrW (s)x

=

p∑
i=1

g (W (s)ei, ei)

=

p∑
i=1

gQ (α (ei, ei) , s)

= −1

2

p∑
i=1

(θ(s)gTF ) (ei, ei),

which shows that κ is independent of gQ.
We denote by κJ the mean curvature 1-form with respect to gJ . Since g is

taut, κ vanishes, and so is κJ , i.e., gJ is also taut. �

In the sequel, we still denote this gJ by g, and call the taut Riemannian
metric g compatible with J . In this case, define the 2-form F (·, ·) = g(J ·, ·),
then we have that for any V ∈ ΓTF ,

i(V )F = 0,

and

[θ(V )F ](s1, s2) = [θ(V )g](Js1, s2) = 0, ∀ s1, s2 ∈ Q.
Hence, F is a basic 2-form, and (F , g, J, F ) is called a transversal almost Her-
mitian structure.
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4. C∞-pure and full

For an even codimensional Riemannian foliation F on M endowed with a
transversal almost complex structure J satisfying θ(V )J = 0, ∀ V ∈ TF ,
denote by Λ2

B the bundle of real basic 2-forms. Since θ(V )J = 0, ∀ V ∈ TF ,
we have a well-defined action of J on Λ2

B by:

J : Λ2
B → Λ2

B

α(·, ·) 7→ α(J ·, J ·).
Then by the formula:

α(·, ·) =
α(·, ·) + α(J ·, J ·)

2
+
α(·, ·)− α(J ·, J ·)

2
,

we get a splitting
Λ2
B = Λ+

J ⊕ Λ−J ,

where Λ+
J is the bundle of J-invariant basic 2-forms, and Λ−J is the bundle of

J-anti-invariant basic 2-forms.
Let Ω2

B be the space of basic 2-forms on M , Ω+
J (Ω−J ) the space of J-invariant

(J-anti-invariant) basic 2-forms.

Definition. Let Z2
B be the space of basic closed 2-forms on M , and let Z±J =

Z2
B ∩ Ω±J . Define

H±J (F) =
{
a ∈ H2

B(F ;R) | ∃α ∈ Z±J such that [α] = a
}
,

and the dimension of H±J (F) are denoted by h±J respectively.

It is obvious that

H+
J (F) +H−J (F) ⊆ H2

B(F ;R).

Definition. J is said to be C∞-pure if H+
J (F) ∩ H−J (F) = 0, and is said

to be C∞-full if H+
J (F) + H−J (F) = H2

B(F ;R). J is C∞-pure and full if

H+
J (F)⊕H−J (F) = H2

B(F ;R).

The main result is the following:

Theorem 4.1. Given a codimension four taut Riemannian foliation F on
a closed smooth manifold M , if J is a transversal almost complex structure
satisfying θ(V )J = 0 for any V ∈ ΓTF , then J is C∞-pure and full.

Remark 4.2. The condition that θ(V )J = 0 for any V ∈ ΓTF seems to be
necessary. One of the reason is we need this condition to guarantee J preserves
basic 2-forms. The other is that for a taut metric, we can easily construct a J
compatible taut metric and the corresponding transversal fundamental 2-form
will be a basic form.

Remark 4.3. For a K-contact manifold (M, ξ, η, φ, g), we have proved that φ
is C∞-pure and full [10]. For the characteristic foliation Fξ, g is taut and
θ(ξ)φ = 0, so this can be considered as a special case of Theorem 4.1.
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In order to prove Theorem 4.1, we do some preparation. Let g be a bundle-
like metric inducing gQ on Q. Define the Hodge star operator:

∗ : ΩrB(F)→ Ωq−rB (F)

as follows:

∗α = (−1)p(q−r) ∗ (α ∧ χF ).

The relation between ∗ and the Hodge star operator ∗ with respect to g is
[9]

∗α = ∗α ∧ χF ,
where χF is the characteristic p-form of F defined in Section 2.

The scalar product in ΩrB(F) is defined by

〈α, β〉B =

∫
M

α ∧ ∗β ∧ χF ,

which is just the restriction of the usual scalar product on Ωr(M) to the sub-
space ΩrB(F) [9].

Define the formal adjoint δB : ΩrB(F)→ Ωr−1
B (F) of dB = d : Ωr−1

B (F)→
ΩrB(F) by

〈dBα, β〉B = 〈α, δBβ〉B .
It was shown in [6, 9] that, on ΩrB(F)

δB = (−1)q(r+1)+1∗ (dB − κ∧) ∗.
Define the basic Laplacian

∆B = dBδB + δBdB ,

then set

HrB(F) = {the harmonic basic r-forms ω | ∆Bω = 0}.
We have the following Theorem 7.22 in [9].

Theorem 4.4. Let F be a transversally oriented Riemannian foliation on a
closed manifold (M, g). Assume g to be bundle-like with κ ∈ Ω1

B(F). Then
there is a decomposition into mutually orthogonal subspaces

ΩrB
∼= im dB ⊕ im δB ⊕HrB

with finite-dimensional HrB.

Remark 4.5. The condition κ ∈ Ω1
B(F) can be removed by the basic decompo-

sition of general mean curvature 1-form, see [8].

When the taut foliation F has codimension q = 4, we have ∗2 =id on Λ2Q∗,
so we get a decomposition

Λ2Q∗ = Λ+Q∗ ⊕ Λ−Q∗,

where Λ± are the ±1-eigenspace of ∗. Suppose Ω±B are the space of sections of
Λ±Q∗, and denote by α+, α− the selfdual, anti-selfdual components of a basic
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2-form α. Furthermore, we have ∆B∗ = ∗∆B (note that if κ 6= 0, ∆B and ∗
do not commute). Hence,

H2(F ,R) = H2
B(F) = H+

B(F)⊕H−B(F),(3)

and we denote the dimension of H2
B(F), H+

B(F), H−B(F) by b2B , b
+
B , b

−
B re-

spectively.
For a codimension four transversal almost Hermitian manifold (M , F , J , g,

F ), we have the following relation

Λ+
J = RF ⊕ Λ−gQ ,Λ

+
gQ = RF ⊕ Λ−J ;(4)

Λ+
J ∩ Λ+

gQ = RF,Λ−J ∩ Λ−gQ = 0.

Hence, similar to [3], we have the following two lemmas:

Lemma 4.6. If α ∈ Ω+
B and α = αh+dθ+δΨ is its basic Hodge decomposition,

then (dθ)+
B = (δΨ)+

B and (dθ)−B = −(δΨ)−B. In particular, the basic 2-form

α− 2(dθ)+
B = αh

is harmonic and the 2-form

α+ 2(dθ)−B = αh + 2dθ

is closed.

Lemma 4.7. Let (Mp+4,F , g, J, F ) be a closed codimension four taut transver-
sal almost Hermitian manifold. Then Z−J ⊂ H+

gQ , and Z−J ⊂ H−J is bijective.

Furthermore, H−J = Z−J = H+,F⊥

gQ .

With the above preparation, we can present the proof of the main result.

Proof of Theorem 4.1. Let g be the J-compatible metric, and F be the basic
2-form. If a ∈ H+

J (F) ∩H−J (F), let α′ ∈ Z+
J , α′′ ∈ Z−J be the representative

for a. Then see page 39 in [9],

dχF + κ ∧ χF = ϕ0 ∈ F 2Ωp+1.

Hence, on a codimension four foliation (M,F), for basic 1-form γ and basic
2-form α′′, γ ∧ α′′ ∧ φ0 ∈ F 5Ωp+1 = 0 vanishes. Therefore, by integration by
parts, we have

0 =

∫
M

α′ ∧ α′′ ∧ χF

=

∫
M

(α′′ + dBγ) ∧ α′′ ∧ χF

=

∫
M

α′′ ∧ α′′ ∧ χF +

∫
M

dBγ ∧ α′′ ∧ χF

=

∫
M

α′′ ∧ ∗α′′ ∧ χF +

∫
M

γ ∧ dBα′′ ∧ χF +

∫
M

γ ∧ α′′ ∧ dχF



1508 J. R. ZHOU

=

∫
M

|α′′|2g dvol +

∫
M

γ ∧ α′′ ∧ (φ0 − κ ∧ χF )

=

∫
M

|α′′|2g dvol.

Hence, α′′ = 0, i.e., a = 0, that’s to say H+
J (F) ∩H−J (F) = 0.

The proof of fullness part is technically almost the same as the proof of
Theorem 2.3 in [3]. �

D. Domı́nguez’s remarkable theorem [1] says that for a Riemannian foliation
F on a closed manifold, there always exists a bundle-like metric for F such
that the mean curvature form κ is a basic 1-form. F. Kamber and Ph. Tondeur
shows κ should be closed [5]. Furthermore, if [κ] ∈ H1

B(F) is trivial, then by a
suitable conformal change to gTF , the bundle-like metric g can be modified to
be a taut metric [5]. Since we have an injective map

H1
B(F)→ H1(M),

closed and simply connected Riemannian foliation is always taut [9]. Hence,
we have the following corollary:

Corollary 4.8. For a codimension four Riemannian foliation F on a closed
and simply connected smooth manifold M , if J is a transversal almost complex
structure satisfying θ(V )J = 0 for any V ∈ ΓTF , then J is C∞-pure and full.

5. Bounds on h±J

Under the condition of Theorem 4.1 and by (3), we have

h+
J + h−J = bB2 = b+B + b−B .

Furthermore, by relations (4), the following inequalities holds:

h+
J ≥ b

−
B , h

−
J ≤ b

+
B .(5)

This can be strengthened as follows:

Lemma 5.1. Let (M,F , g, J, F ) be a closed codimension four almost Hermitian
taut Riemannian foliation. Assume that the harmonic part Fh of the transversal
Hodge decomposition of F is not identically zero. Then

h+
J ≥ b

−
B + 1, h−J ≤ b

+
B − 1.

Proof. Let F = Fh + dθ + δΨ be the transversal Hodge decomposition of F ,
then F +2(dθ)− is a closed J-invariant basic 2-form, and [Fh+2dθ] ∈ H+

B ∩H
−
B

is nontrivial since Fh is not identically zero. �

A more specific case is when F is closed, i.e., the manifold M in Lemma 5.1
is transversal almost Kähler, we let ω = F .

Theorem 5.2. If (M,F , g, J, ω) is taut transversal almost Kähler of codimen-
sion four, then

h+
J ≥ b

−
B + 1, h−J ≤ b

+
B − 1.
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Proof. Since g is taut, ∗∆ = ∆∗. Hence, dω = 0 and ω ∈ Ω+
g induces that

δBω = 0, i.e., ω is basic harmonic itself. �
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1983.
[6] , Duality for Riemannian foliations, in Singularities, Part 1 (Arcata, Calif.,

1981), 609–618, Proc. Sympos. Pure Math., 40, Amer. Math. Soc., Providence, RI,

1983.
[7] T.-J. Li and W. Zhang, Comparing tamed and compatible symplectic cones and coho-

mological properties of almost complex manifolds, Comm. Anal. Geom. 17 (2009), no. 4,

651–683. https://doi.org/10.4310/CAG.2009.v17.n4.a4
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