DOI QR코드

DOI QR Code

Battery-less Pork Freshness Monitoring Based on High-Efficiency RF Energy Harvesting

  • Nguyen, Nam Hoang (Department of Electronic Engineering, Pukyong National University) ;
  • Lam, Minh Binh (Department of Electronic Engineering, Pukyong National University) ;
  • Chung, Wan-Young (Department of Electronic Engineering, Pukyong National University)
  • 투고 : 2020.09.14
  • 심사 : 2020.09.28
  • 발행 : 2020.09.30

초록

Food safety has emerged as a growing concern for human health in recent times. Consuming contaminated food may lead to serious health problems, and therefore, a system for monitoring food freshness that is both non-detrimental to the quality of food and highly accurate is required to ensure that only high-quality fresh food packages are provided to the customers. This paper proposes a method to monitor and detect food quality using a compact smart sensor tag. The smart tag is composed of three ultra-low-power sensors, which monitor four major indicators of food freshness: temperature, humidity, and the concentrations of ammonia and hydrogen sulfide gases. An RF energy scavenging circuit is integrated into the smart sensor tag to harvest energy from radio waves at a high frequency of 13.56 MHz to supply sufficient power to the tag. Experimental results show that the proposed energy harvester can efficiently obtain energy at a distance of approximately 40 cm from a 4 W reader. In addition, the proposed smart sensor tag can operate without any battery, thereby eliminating the requirement of frequent battery replacement and consequently decreasing the cost. Meanwhile, the freshness of preserved pork is continuously monitored under two conditions--room temperature and refrigerator temperature--both of which are the most common temperatures under which food is generally stored. The food-monitoring experiments are conducted over a period of one week using the proposed battery-less tag. Based on the experimental results, the food assessment is classified into four categories: fresh, normal, low, and spoiled.

키워드

참고문헌

  1. M. M. Aung and Y. S. Chang, "Temperature Management for the Quality Assurance of a Perishable Food Supply Chain", Food Control, Vol. 40, pp. 198-207, 2013. https://doi.org/10.1016/j.foodcont.2013.11.016
  2. W. R. Kim, M. M. Aung, Y. S. Chang, and C. Makatsoris, "Freshness Gauge based cold storage management: A method for adjusting", Food Control, Vol. 40, pp. 198-207, 2013. https://doi.org/10.1016/j.foodcont.2013.11.016
  3. W. R. Kim, M. M. Aung, Y. S. Chang, and C. Makatsoris, "Freshness Gauge based cold storage management: A method for adjusting temperature and humidity levels for food quality", Food Control, Vol. 47, pp. 510-519, 2015. https://doi.org/10.1016/j.foodcont.2014.07.051
  4. G. T. Le, T. V. Tran, H. S. Lee, and W. Y. Chung, "Longrange batteryless RF sensor for monitoring the freshness of packaged vegetables", Sens. Actuators A, Vol. 237, pp. 20-28, 2016. https://doi.org/10.1016/j.sna.2015.11.013
  5. A. A. Argyri, A. I. Doulgeraki, V. A. Blana, E. Z. Panagou, and G. J. E. Nychas, "Potential of a simple HPLC-based approach for the identification of the spoilage status of minced beef stored at various temperatures and packaging systems", Int. J. Food Microbiol., Vol. 150, No. 1, pp. 25-33, 2011. https://doi.org/10.1016/j.ijfoodmicro.2011.07.010
  6. Q. Chen, Z. Hui, J. Zhao, and Q. Ouyang, "Evaluation of chicken freshness using a low-cost colorimetric sensor array with AdaBoost-OLDA classification algorithm", LWT - Food Sci. Technol., Vol. 57, No. 2, pp. 502-507, 2014. https://doi.org/10.1016/j.lwt.2014.02.031
  7. C. Rukchon, A. Nopwinyuwong, S. Trevanich, T. Jinkarn, and P. Suppakul, "Development of a food spoilage indicator for monitoring freshness of skinless chicken breast", Talanta, Vol. 130, pp. 547-554, 2014. https://doi.org/10.1016/j.talanta.2014.07.048
  8. J. Koskela, J. Sarfraz, P. Ihalainen, A. Maattanen, P. Pulkkinen, H. Tenhu, T. Nieminen, A. Kilpela, and J. Peltonen, "Monitoring the quality of raw poultry by detecting hydrogen sulfide with printed sensors", Sens. Actuators B, Vol. 218, pp. 89-96, 2015. https://doi.org/10.1016/j.snb.2015.04.093
  9. A. Loutfi, S. Coradeschi, G. K. Mani, P. Shankar, and J. B. B. Rayappan, "Electronic noses for food quality: A review", J. Food Eng., Vol. 144. pp. 103-111, 2015. https://doi.org/10.1016/j.jfoodeng.2014.07.019
  10. K. Timsorn, T. Thoopboochagorn, N. Lertwattanasakul, and C. Wongchoosuk, "Evaluation of bacterial population on chicken meats using a briefcase electronic nose", Biosyst. Eng., Vol. 151, pp. 116-125, 2016. https://doi.org/10.1016/j.biosystemseng.2016.09.005
  11. M. Yu, W. D. McCulloch, Z. Huang, B. B. Trang, J. Lu, K. Amine, and Y. Wu, "Solar-powered electrochemical energy storage: an alternative to solar fuels", J. Mater. Chem. A, Vol. 4, No. 8, pp. 2766-2782, 2016. https://doi.org/10.1039/C5TA06950E
  12. V. Leonov, "Thermoelectric energy harvesting of human body heat for wearable sensors", IEEE Sens. J., Vol. 13, No. 6, pp. 2284-2291, 2013. https://doi.org/10.1109/JSEN.2013.2252526
  13. M. Wahbah, M. Alhawari, B. Mohammad, H. Saleh, and M. Ismail, "Characterization of human body-based thermal and vibration energy harvesting for wearable devices", IEEE J. Emerg. Sel. Top. Circuits Syst., Vol. 4, No. 3, pp. 354-363, 2014. https://doi.org/10.1109/JETCAS.2014.2337195
  14. G. K. Singh, "Solar power generation by PV (photovoltaic) technology: A review", Energy, Vol. 53. pp. 1-13, 2013. https://doi.org/10.1016/j.energy.2013.02.057
  15. P. Kamalinejad, C. Mahapatra, Z. Sheng, S. Mirabbasi, V. C. Victor, and Y. L. Guan, "Wireless energy harvesting for the Internet of Things", IEEE Commun. Mag., Vol. 53, No. 6, pp. 102-108, 2015. https://doi.org/10.1109/MCOM.2015.7120024
  16. K. Kaushik, D. Mishra, S. De, K. R. Chowdhury, and W. Heinzelman, "Low-Cost Wake-Up Receiver for RF Energy Harvesting Wireless Sensor Networks", IEEE Sens. J., Vol. 16, No. 16, pp. 6270-6278, 2016. https://doi.org/10.1109/JSEN.2016.2574798
  17. D. Mishra, S. De, S. Jana, S. Basagni, K. Chowdhury, and W. Heinzelman, "Smart RF energy harvesting communications: Challenges and opportunities", IEEE Commun. Mag., Vol. 53, No. 4, pp. 70-78, 2015. https://doi.org/10.1109/MCOM.2015.7081078
  18. Y. E. Sun and N. M. Mahyuddin, "A 1.8 GHz and 2.4 GHz multiplier design for RF energy harvester in wireless sensor network", 9th Int. Conf. on Robot. Vis. Signal Process. Power Appl., Vol. 398. pp. 501-510, 2016.
  19. S. K. Pandey, K. H. Kim, and K. T. Tang, "A review of sensor-based methods for monitoring hydrogen sulfide", Trends Anal. Chem., Vol. 32. pp. 87-99, 2012. https://doi.org/10.1016/j.trac.2011.08.008
  20. O. Mourad, P. Le Thuc, R. Staraj, and P. Iliev, "System modeling of the RFID contactless inductive coupling using 13.56 MHz loop antennas", 8th Eur. Conf. Antennas Propag., pp. 2034-2038, The Hague, Netherlands, 2014.
  21. P. Nintanavongsa, U. Muncuk, D. R. Lewis, and K. R. Chowdhury, "Design optimization and implementation for RF energy harvesting circuits", IEEE J. Emerg. Sel. Top. Circuits Syst., Vol. 2, No. 1, pp. 24-33, 2012. https://doi.org/10.1109/JETCAS.2012.2187106
  22. E. M. Ali, N. Z. Yahaya, N. Perumal, and M. A. Zakariya, "Development of Cockcroft? Walton voltage multiplier for RF energy harvesting applications", J. Sci. Res., Vol. 3, No. 3, pp. 47-51, 2016.
  23. M. Guan, K. Wang, Q. Zhu, and W. H. Liao, "A High Efficiency Boost Converter with MPPT Scheme for Low Voltage Thermoelectric Energy Harvesting", J. Electron. Mater., Vol. 45, No. 11, pp. 5514-5520, 2016. https://doi.org/10.1007/s11664-016-4765-1
  24. S. A. Wahab, M. S. Bhuyan, J. Sampe, and S. H. M. Ali, "Parametric analysis of boost converter for energy harvesting using piezoelectric for micro devices", 2014 IEEE Int. Conf. Semicond. Electron., pp. 525-528, Kuala Lumpur, Malaysia, 2014.
  25. K. H. Eom, K. H. Hyun, S. Lin, and J. W. Kim, "The meat freshness monitoring system using the smart RFID tag", Int. J. Distrib. Sens. Netw., Vol. 10, No. 7, pp. 1-9, 2014.
  26. X. Y. Tian, Q. Cai, and Y. M. Zhang, "Rapid classification of hairtail fish and pork freshness using an electronic nose based on the PCA method", Sensors, Vol. 12, No. 1, pp. 260-277, 2012.