DOI QR코드

DOI QR Code

Effect of Trichoderma sp. GL02 on alleviating Drought Stress in Pepper Plants

Trichoderma sp. GL02에 의한 고추 식물의 건조 스트레스 완화 효과

  • 김상태 (국립농업과학원 농업미생물과) ;
  • 유성제 (국립농업과학원 농업미생물과) ;
  • 송재경 (국립농업과학원 농업미생물과) ;
  • 원항연 (국립농업과학원 농업미생물과) ;
  • 상미경 (국립농업과학원 농업미생물과)
  • Received : 2020.03.27
  • Accepted : 2020.06.02
  • Published : 2020.08.31

Abstract

Drought stress is one of major environmental stresses in plants; this leads to reduce plant growth and crop yield. In this study, we selected fungal isolate for mitigating drought stress in pepper plants. To do this, 41 fungi were isolated from rhizosphere or bulk soils of various plants in Jeju, Gangneung, Hampyeong in Korea. Out of 41 isolates, we screened two isolates without phytotoxicity through seed germination of tomato, pepper, and cabbage treated with fungal spores; through following plant assay, we selected GL02 as a candidate for alleviating drought stress in pepper plants. As a result of greenhouse test of pepper plants in drought condition, the stomatal conductance on leaves of pepper plants treated with GL02 was increased, whereras the malondialdehyde (MDA) and electrolyte leakage were decreased compared to that in control plants. When stressed plants were rewatered, stomatal conductance of the plants treated with GL02 was increased; the electrolyte leakage was decreased. Based on internal transcribed spacer (ITS) sequencing analysis, isolate GL02 was belonging to genus Trichoderma. Taken together, drought stress in pepper plants treated with GL02 was alleviated, when it was rewatered after drought-stressed, the plants could be recovered effectively. Therefore, Trichoderma sp. GL02 could be used as a bio-fertilizer to alleviate drought stress in pepper plants.

이상기후로 인한 건조 스트레스에 의해 식물의 기공전도도와 광합성의 감소로 생장과 작물생산량이 감소하는 피해가 발생하고 있다. 이러한 식물의 스트레스를 완화하는 유용 곰팡이를 선발하기 위해 국내 농경지에서 41 균주를 분리하였으며, 발아율 검사로 2종의 곰팡이를 선발하였으며, 식물검정을 통해 최종 Trichoderma sp. GL02를 선발하였다. GL02를 고추 식물체에 처리하였을 때, 대조구에 비해 기공전도도가 증가하고, MDA와 전기전도도는 감소하는 것으로 보아, GL02를 처리한 고추 식물체는 건조 스트레스가 완화되며, 건조 후 재관수하였을 때 회복도 효과적이었다. 이러한 결과는 GL02는 고추 식물체에 건조 스트레스를 완화시키는 유용한 소재로 사용될 수 있음을 시사한다. 또한, 추후 포장 실험을 통하여 Trichoderma sp. GL02의 건조 스트레스 완화 효과가 고추 생산량과 연관이 있는지 확인해 볼 예정이다.

Keywords

References

  1. Anjum, S. A., L. C. Wang, M. Farooq, M. Hussain, L. L. Xue, and C. M. Zou. 2011. Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J. Afr. Agric. Res. 6: 2026-2032.
  2. Assefa, Y., S. A. Staggenborg, and P. V. V. Prasad. 2010. Grain sorghum water requirement and responses to drought stress: A review. Crop Management. doi:10.1094/CM-20101-1109-01-RV.
  3. Bang, N. K., W. H. Nam, E. M. Hong, M. J. Hayes, and M. D. Svoboda. 2018. Assessment of the meteorological characteristics and statistical drought frequency for the extreme 2017 spring drought event across South Korea. Journal of the Korean Society of Agricultural Engineers. 60: 37-48 (in Korean).
  4. Bao, A. K., S. M. Wang, G. Q. Wu, J. J. Xi, J. L. Zhang, and C. U. Wang. 2009. Overexpression of the Arabidopsis H+-PPase enhanced the salt and drought tolerance in transgenic alfalfa (Medicago sativa L.). Plant Sci. 176: 232-240. https://doi.org/10.1016/j.plantsci.2008.10.009
  5. Barrs, H. D. and P. E. Weatherley. 1962. A re-examination of the relative turgidity technique for estimating water deficit in leaves. Aus. J. Biol. Sci. 15: 413-428. https://doi.org/10.1071/BI9620413
  6. Chen, W., X. Yao, K. Cai, and J. Chen. 2011. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biol Trace Elem Res. 142: 67-76. https://doi.org/10.1007/s12011-010-8742-x
  7. Chomkitichai, W., A. Chumyam, P. Rachtanapun, J. Uthaibutra, and K. Saengnil. 2014. Reduction of reactive oxygen species production and membrane damage during storage of 'Daw' longan fruit by chlorine dioxide. Sci. Hortic. 170: 143-149. https://doi.org/10.1016/j.scienta.2014.02.036
  8. Gusain, Y. S., U. S. Singh, and A. K. Sharma. 2014. Enhance activity of stress related enzymes in rice (Oryza sativa L.) induced by plant growth promoting fungi under drought stress. Afr. J. Agric. Res. 9: 1430-1434. https://doi.org/10.5897/AJAR2014.8575
  9. Guler, N. S., N. Pehlivan, S. A. Karaoglu, S. Guzel, and A. Bozdeveci. 2016. Trichoderma atroviride ID20G inoculation ameliorates drought stress-induced damages by improving antioxidant defence in maize seedlings. Acta Physiol Plant 38: 132. https://doi.org/10.1007/s11738-016-2153-3
  10. Hasanuzzaman, M., K. Nahar, S. S. Gill, and M. Fujita. 2014. Drought stress responses in plants, oxidative stress, and antioxidant defense. In: Tuteja, N., Gill, S. S. (Eds.), Climate Change and Plant Abiotic Stress Tolerance, first edition. pp. 209-210. Wiley-VCH Verlag GmbH & Co. KGaA.
  11. Hashem, A., E. F. Abd_Allah, A. A. Alqarawi, A. A. A. Huqail, and D. Egamberdieva. 2014. Alleviation of abiotic stress in Ochradenus baccatus (Del.) by Trichoderma hamatum (Bonord.) Bainier. J Plant Interact. 9: 857-868. https://doi.org/10.1080/17429145.2014.983568
  12. Kim, S. T., S. J. Yoo, J. Song, H. Y. Weon, and M. K. Sang. 2019. Screening of bacterial strains for alleviating drought stress in chili pepper plants. Res. Plant Dis. 25: 1-7. https://doi.org/10.5423/RPD.2019.25.1.1
  13. Kusvuran, S. 2012. Effects of drought and salt stresses on growth, stomatal conductance, leaf water osmotic potentials of melon genotypes (Cucumismelo L.). Afr. J. Agric. Res. 7, 775-781.
  14. Lin, Y., D. B. Watte, J. W. Kloepper, Y. Feng, and H. A. Torbert. 2020. Influence of plant growth-promoting rhizobacteria on corn growth under drought stress Commun Soil Sci Plant Anal. 51: 250-264. https://doi.org/10.1080/00103624.2019.1705329
  15. Mastouri, F., T. Bjorkman, and G. E. Harman. 2010. Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedling. Phytopathology 100: 1213-1221. https://doi.org/10.1094/PHYTO-03-10-0091
  16. Matiu, M., D. P. Ankerst, and A. Menzel. 2017. Interactions between temperature and drought in global and regional crop yield variability during 1961-2014. PLOS ONE. 12: e0178339. https://doi.org/10.1371/journal.pone.0178339
  17. Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7: 405-410. https://doi.org/10.1016/S1360-1385(02)02312-9
  18. Miller, G., N. Suzuki, L. Rizhsky, A. Hegie, S. Koussevitzky, and R. Mittler. 2007. Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. Plant Physiol. 144: 1777-1785. https://doi.org/10.1104/pp.107.101436
  19. Mona, S. A., A. Hashem, E. F. Abd_Allah, A. A. Alqarawi, D. W. K. Soliman, S. Wirth, and D. Egamberdieva. 2017. Increased resistance of drought by Trichoderma harzianum fungal treatment correlates with increased secondary metabolites and proline content. J. Integr. Agric. 16: 1751-1757. https://doi.org/10.1016/S2095-3119(17)61695-2
  20. Racic, G., I. Vukelic, L. Prokic, N. Curcic, M. Zoric, L. Jovanovic, and D. Pankovic. 2018. The influence of Trichoderma brevicompactum treatment and drought on physiological parameters, abscisic acid content and signalling pathway marker gene expression in leaves and roots of tomato. Ann Appl Biol. 173: 213-221. https://doi.org/10.1111/aab.12454
  21. Salam, E. A., A. Alatar, and M. A. El-Sheikh. 2017. Inoculation with arbuscular mycorrhizal fungi alleviates harmful effects of drought stress on damask rose. Saudi J. Biol. Sci. 25: 1772-1780. https://doi.org/10.1016/j.sjbs.2017.10.015
  22. Tiwari, S., C. Lata, P. S. Chauhan, and C. S. Nautiyal. 2016. Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol. Biochem. 99: 108-117. https://doi.org/10.1016/j.plaphy.2015.11.001
  23. Xie, Z., Y. Chu, W. Zhang, D. Lang, and X. Zhang. 2019. Bacillus pumilus alleviates drought stress and increases metabolite accumulation in Glycyrrhiza uralensis Fisch. Environ Exp Bot 158: 99-106. https://doi.org/10.1016/j.envexpbot.2018.11.021
  24. Yang, T., S. Ma, and C. C. Dai. 2014. Drought degree constrains the beneficial effects of a fungal endophyte on Atractylodes lancea. J. Appl. Microbiol. 117: 1435-1449. https://doi.org/10.1111/jam.12615
  25. Yoo, S. J., D. J. Shin, H. Y. Weon, J. Song, and M. K. Sang. 2018. Aspergillus terreus JF27 promotes the growth of tomato plants and induces resistance against Pseudomonas syringae pv. tomato. Mycobiology 46: 147-153. https://doi.org/10.1080/12298093.2018.1475370