References
-
K. Greer, D. Zeller, J. Woroniak, A. Coulter, M. Winchester, M. L. D. Palomares, and D. Pauly, "Global trends in carbon dioxide (
$CO_2$ ) emissions from fuel combustion in marine fisheries from 1950 to 2016", Mar. Policy, 107, 103382 (2019). https://doi.org/10.1016/j.marpol.2018.12.001 - M. Kumar, S. Sundaram, E. Gnansounou, C. Larroche, and I. S. Thakur, "Carbon dioxide capture, storage and production of biofuel and biomaterials by bacteria: A review", Bioresour. Technol., 247, 1059 (2018). https://doi.org/10.1016/j.biortech.2017.09.050
- D. M. D'Alessandro, B. Smit, and J. R. Long, "Carbon dioxide capture: Prospects for new materials", Angew. Chem. Int. Ed. Engl., 49, 6058 (2010). https://doi.org/10.1002/anie.201000431
-
A. A. Olajire, "
$CO_2$ capture and separation technologies for end-of-pipe applications - A review", Energy, 35, 2610 (2010). https://doi.org/10.1016/j.energy.2010.02.030 -
C.-H. Yu, C.-H. Huang, and C.-S. Tan, "A review of
$CO_2$ capture by absorption and adsorption", Aerosol Air Qual. Res., 12, 745 (2012). https://doi.org/10.4209/aaqr.2012.05.0132 - Z. Y. Yeo, T. L. Chew, P. W. Zhu, A. R. Mohamed, and S.-P. Chai, "Conventional processes and membrane technology for carbon dioxide removal from natural gas: A review", J. Nat. Gas Chem., 21, 282 (2012). https://doi.org/10.1016/S1003-9953(11)60366-6
- N. Kosinov, J. Gascon, F. Kapteijn, and E. J. M. Hensen, "Recent developments in zeolite membranes for gas separation", J. Membr. Sci., 499, 65 (2016). https://doi.org/10.1016/j.memsci.2015.10.049
-
M. Saeed, S. Rafiq, L. H. Bergersen, and L. Deng, "Tailoring of water swollen PVA membrane for hosting carriers in
$CO_2$ facilitated transport membranes", Sep. Purif. Technol., 179, 550 (2017). https://doi.org/10.1016/j.seppur.2017.02.022 - R. Khalilpour, K. Mumford, H. Zhai, A. Abbas, G. Stevens, and E. S. Rubin, "Membrane-based carbon capture from flue gas: A review", J. Clean Prod., 103, 286 (2015). https://doi.org/10.1016/j.jclepro.2014.10.050
- O. d. Q. F. Araujo and J. L. de Medeiros, "Carbon capture and storage technologies: Present scenario and drivers of innovation", Curr. Opin. Chem. Eng., 17, 22 (2017). https://doi.org/10.1016/j.coche.2017.05.004
- L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
-
M. Waqas Anjum, B. Bueken, D. De Vos, and I. F. J. Vankelecom, "MIL-125(Ti) based mixed matrix membranes for
$CO_2$ separation from$CH_4$ and$N_2$ ", J. Membr. Sci., 502, 21 (2016). https://doi.org/10.1016/j.memsci.2015.12.022 -
V. Nafisi and M.-B. Hagg, "Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for
$CO_2$ capture", J. Membr. Sci., 459, 244 (2014). https://doi.org/10.1016/j.memsci.2014.02.002 -
M. Rezakazemi, A. Ebadi Amooghin, M. M. Montazer-Rahmati, A. F. Ismail, and T. Matsuura, "State-of-the-art membrane based
$CO_2$ separation using mixed matrix membranes (MMMs): An overview on current status and future directions", Prog. Polym. Sci., 39, 817 (2014). https://doi.org/10.1016/j.progpolymsci.2014.01.003 - S. R. Venna and M. A. Carreon, "Metal organic framework membranes for carbon dioxide separation", Chem. Eng. Sci., 124, 3 (2015). https://doi.org/10.1016/j.ces.2014.10.007
- T. Rodenas, I. Luz, G. Prieto, B. Seoane, H. Miro, A. Corma, F. Kapteijn, I. X. F. X. Llabres, and J. Gascon, "Metal-organic framework nanosheets in polymer composite materials for gas separation", Nat. Mater., 14, 48 (2015). https://doi.org/10.1038/nmat4113
- Z. Hu and D. Zhao, "De facto methodologies toward the synthesis and scale-up production of UiO-66-type metal-organic frameworks and membrane materials", Dalton Trans., 44, 19018 (2015). https://doi.org/10.1039/C5DT03359D
-
S. Edubilli and S. Gumma, "A systematic evaluation of UiO-66 metal organic framework for
$CO_2/N_2$ separation", Sep. Purif. Technol., 224, 85 (2019). https://doi.org/10.1016/j.seppur.2019.04.081 -
C. Y. Chuah, J. Lee, J. Song, and T. H. Bae, "
$CO_2/N_2$ separation properties of polyimide-based mixed-matrix membranes comprising UiO-66 with various functionalities", Membranes, 10, 154 (2020). https://doi.org/10.3390/membranes10070154 - M. J. Katz, Z. J. Brown, Y. J. Colon, P. W. Siu, K. A. Scheidt, R. Q. Snurr, J. T. Hupp, and O. K. Farha, "A facile synthesis of UiO-66, UiO-67 and their derivatives", Chem. Commun., 49, 9449 (2013). https://doi.org/10.1039/c3cc46105j
-
S. J. Kim, H. Jeon, D. J. Kim, and J. H. Kim, "High-performance polymer membranes with multi- functional amphiphilic micelles for
$CO_2$ capture", ChemSusChem, 8, 3783 (2015). https://doi.org/10.1002/cssc.201501063 - P. Yang, Q. Liu, J. Liu, H. Zhang, Z. Li, R. Li, L. Liu, and J. Wang, "Interfacial growth of a metalorganic framework (UiO-66) on functionalized graphene oxide (GO) as a suitable seawater adsorbent for extraction of uranium(vi)", J. Mater. Chem. A, 5, 17933 (2017). https://doi.org/10.1039/C6TA10022H
-
N. U. Kim, B. J. Park, J. H. Lee, and J. H. Kim, "High-performance ultrathin mixed-matrix membranes based on an adhesive PGMA-co-POEM comb-like copolymer for
$CO_2$ capture", J. Mater. Chem. A, 7, 14723 (2019). https://doi.org/10.1039/C9TA02962A -
Y. Cao, H. Zhang, F. Song, T. Huang, J. Ji, Q. Zhong, W. Chu, and Q. Xu, "
$UiO-66-NH_2/GO$ composite: Synthesis, characterization and$CO_2$ adsorption performance", Materials, 11, 589 (2018). https://doi.org/10.3390/ma11040589 -
M. W. Anjum, F. Vermoortele, A. L. Khan, B. Bueken, D. E. De Vos, and I. F. Vankelecom, "Modulated UiO-66-based mixed-matrix membranes for
$CO_2$ separation", ACS Appl. Mater. Interfaces, 7, 25193 (2015). https://doi.org/10.1021/acsami.5b08964