DOI QR코드

DOI QR Code

Aminopropyl Functionalized Silica Nanoparticle Dispersed Nafion Composite Membranes for Vanadium Redox Flow Batteries

아미노프로필 관능기를 갖는 실리카 나노 입자가 분산된 나피온 복합막을 이용한 바나듐 레독스 흐름 전지

  • Lee, Doohee (Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Yu, Duk Man (Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Yoon, Sang Jun (Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kim, Sangwon (Department of Environmental and Polymer Engineering, Inha University) ;
  • So, Soonyong (Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Hong, Young Taik (Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT))
  • 이두희 (한국화학연구원 에너지소재연구센터) ;
  • 유덕만 (한국화학연구원 에너지소재연구센터) ;
  • 윤상준 (한국화학연구원 에너지소재연구센터) ;
  • 김상원 (인하대학교 고분자환경융합공학전공) ;
  • 소순용 (한국화학연구원 에너지소재연구센터) ;
  • 홍영택 (한국화학연구원 에너지소재연구센터)
  • Received : 2020.10.05
  • Accepted : 2020.10.16
  • Published : 2020.10.31

Abstract

Conventional perfluorinated sulfonic acid membrane, Nafion is widely used for vanadium redox flow battery (VRFB). It is desired to prevent vanadium ion permeation through a membrane to retain the capacity, and to keep the cell efficiency of a VRFB. Highly proton conductive and chemically stable Nafion membranes, however, suffer from high vanadium permeation, which induce the reduction in charge and discharge capacity by side reactions of vanadium ions. In this study, to resolve the issue, silica nanoparticles, which are functionalized with 3-aminopropyl group (fS) are introduced to enhance the long-term performance of a VRFB by lowering vanadium permeation. It is expected that amine groups on silica nanoparticles are converted to positive ammonium ion, which could deteriorate positively charged vanadium ions' crossover by Gibbs-Donnan effect. There is reduction in proton conductivity may due to acid-base complexation between fS and Nafion side chains, but ion selectivity of proton to vanadium ion is enhanced by introducing fS to Nafion membranes. With the composite membranes of Nafion and fS, VRFBs maintain their discharge capacity up to 80% at a high current density of 150 mA/㎠ during 200 cycles.

기존의 바나듐 레독스 흐름전지(vanadium redox flow battery, VRFB)에서 사용하고 있는 과불소계이오노머인 나피온(Nafion)은 전해질에 존재하는 바나듐 이온의 투과도가 높아, 바나듐 이온이 분리막을 투과하여 반대쪽 전해질로 교차 이동하는 문제를 갖고 있다. VRFB에서 바나듐 이온의 투과는 서로 다른 산화수를 갖는 바나듐 이온이 부반응을 일으켜 충전, 방전 용량의 감소를 야기하고, 장기적인 성능 감소를 일으키는 원인이 된다. 이러한 문제를 해결하기 위해 본 연구에서는 SiO2에 3-aminopropyl group이 도입된 나노입자(fS)를 Nafion에 분산시켜 바나듐 이온의 투과를 감소시키고, VRFB의 장기적인 성능의 향상을 도모하고자 하였다. SiO2에 붙어 있는 아민기(-NH2)가 Nafion의 술폰산 음이온(SO3-)과 이온결합을 형성함과 동시에, 암모늄 양이온(-NH3+)의 양전하가 바나듐 이온에 대해 Gibbs-Donnan 효과를 나타내어 낼 것이라고 기대하였다. fS를 섞은 Nafion 용액의 pH와 Nafion-fS 막의 IEC 측정을 통해 암모늄 양이온과 술폰산 음이온의 이온결합이 존재하는 것을 확인하였고, fS의 양이 많아질수록 바나듐 이온의 투과도가 감소하는 것을 확인하였다. VRFB 단위 전지에 제조한 복합막을 도입하였을 때, 150 mA/㎠의 전류밀도에서 충방전 사이클을 200회 반복 진행하여도 방전용량을 최대 80%까지 유지할 수 있었다.

Keywords

References

  1. Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, and J. Liu, "Electrochemical energy storage for green grid", Chem. Rev., 111, 3577 (2011). https://doi.org/10.1021/cr100290v
  2. A. Castillo and D. F. Gayme, "Grid-scale energy storage applications in renewable energy integration: A survey", Energy Convers. Manag., 87, 885 (2014). https://doi.org/10.1016/j.enconman.2014.07.063
  3. Y. Yang, S. Bremner, C. Menictas, and M. Kay, "Battery energy storage system size determination in renewable energy systems: A review", Renew. Sustain. Energy Rev., 91, 109 (2018). https://doi.org/10.1016/j.rser.2018.03.047
  4. H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, and Y. Ding, "Progress in electrical energy storage system: A critical review", Prog. Nat. Sci., 19(3), 291 (2009). https://doi.org/10.1016/j.pnsc.2008.07.014
  5. M. Skyllas-Kazacos, M. H. Chakrabarti, S. A. Hajimolana, F. S. Mjalli, and M. Saleem, "Progress in flow battery research and development", J. Electrochem. Soc., 158, 55 (2011).
  6. P. Leung, X. Li, C. Ponce De Leon, L. Berlouis, C. T. J. Low, and F. C. Walsh, "Progress in redox flow batteries, remaining challenges and their applications in energy storage", RSC Adv., 2(27), 10125 (2012). https://doi.org/10.1039/c2ra21342g
  7. M. Ulaganathan, V. Aravindan, Q. Yan, S. Madhavi, M. Skyllas-Kazacos, and T. M. Lim, "Recent advancements in all-vanadium redox flow batteries", Adv. Mater. Interfaces, 3(1), 1 (2016).
  8. Y. Shi, C. Eze, B. Xiong, W. He, H. Zhang, T. M. Lim, A. Ukil, and J. Zhao, "Recent development of membrane for vanadium redox flow battery applications: A review", Appl. Energy, 238, 202 (2019). https://doi.org/10.1016/j.apenergy.2018.12.087
  9. A. Parasuraman, T. M. Lim, C. Menictas, and M. Skyllas-Kazacos, "Review of material research and development for vanadium redox flow battery applications", Electrochim. Acta, 101, 27 (2013). https://doi.org/10.1016/j.electacta.2012.09.067
  10. X. Li, H. Zhang, Z. Mai, H. Zhang, and I. Vankelecom, "Ion exchange membranes for vanadium redox flow battery (VRB) applications", Energy Environ. Sci., 4, 1147 (2011). https://doi.org/10.1039/c0ee00770f
  11. B. Turker, S. Arroyo Klein, E. M. Hammer, B. Lenz, and L. Komsiyska, "Modeling a vanadium redox flow battery system for large scale applications", Energy Convers. Manag., 66, 26 (2013). https://doi.org/10.1016/j.enconman.2012.09.009
  12. J. Sun, D. Shi, H. Zhong, X. Li, and H. Zhang, "Investigations on the self-discharge process in vanadium flow battery", J. Power Sources, 294, 562 (2015). https://doi.org/10.1016/j.jpowsour.2015.06.123
  13. L. Li, S. Kim, W. Wang, M. Vijayakumar, Z. Nie, B. Chen, J. Zhang, G. Xia, J. Hu, G. Graff, J. Liu, and Z. Yang, "A stable vanadium redox-flow battery with high energy density for large-scale energy storage", Adv. Energy Mater., 1, 394 (2011). https://doi.org/10.1002/aenm.201100008
  14. J. Sarkar and S. Bhattacharyya, "Application of graphene and graphene-based materials in clean energy-related devices Minghui", Arch. Thermodyn., 33, 23 (2012). https://doi.org/10.2478/v10173-012-0009-9
  15. X.-Z. Yuan, C. Song, A. Platt, N. Zhao, H. Wang, H. Li, K. Fatih, and D. Jang, "A review of all-vanadium redox flow battery durability: Degradation mechanisms and mitigation strategies", Int. J. Energy Res., 43, 6599 (2019).
  16. B. Schwenzer, J. Zhang, S. Kim, L. Li, J. Liu, and Z. Yang, "Membrane development for vanadium redox flow batteries", ChemSusChem, 4, 1388, (2011). https://doi.org/10.1002/cssc.201100068
  17. B. Jiang, L. Wu, L. Yu, X. Qiu, and J. Xi, "A comparative study of Nafion series membranes for vanadium redox flow batteries", J. Membr. Sci., 510, 18 (2016). https://doi.org/10.1016/j.memsci.2016.03.007
  18. K. A. Mauritz and R. B. Moore, "State of understanding of Nafion", Chem. Rev., 104, 4535 (2004). https://doi.org/10.1021/cr0207123
  19. W. Y. Hsu and T. D. Gierke, "Ion transport and clustering in nafion perfluorinated membranes", J. Membr. Sci., 13, 307 (1983). https://doi.org/10.1016/S0376-7388(00)81563-X
  20. M. A. Aziz and S. Shanmugam, "Zirconium oxide nanotube-Nafion composite as high performance membrane for all vanadium redox flow battery", J. Power Sources, 337, 36 (2017). https://doi.org/10.1016/j.jpowsour.2016.10.113
  21. L. Yu, F. Lin, L. Xu, and J. Xi, "A recast Nafion/graphene oxide composite membrane for advanced vanadium redox flow batteries", RSC Adv., 6, 3756 (2016). https://doi.org/10.1039/C5RA24317C
  22. S. I. Hossain, M. A. Aziz, and S. Shanmugam, "Ultrahigh ion-selective and durable Nafion-NdZr composite layer membranes for all-vanadium redox flow batteries", ACS Sustain. Chem. Eng., 8, 1998 (2020). https://doi.org/10.1021/acssuschemeng.9b06541
  23. Y. Lee, S. Kim, R. Hempelmann, J. H. Jang, H.‐J. Kim, J. Han, J. Kim, and D. Henkensmeier, "Nafion membranes with a sulfonated organic additive for the use in vanadium redox flow batteries", J. Appl. Polym. Sci., 136, 8 (2019).
  24. B. G. Kim, T. H. Han, and C. G. Cho, "Sulfonated graphene oxide/nafion composite membrane for vanadium redox flow battery", J. Nanosci. Nanotechnol., 14, 9073 (2014). https://doi.org/10.1166/jnn.2014.10087
  25. X. Teng, Y. Zhao, J. Xi, Z. Wu, X. Qiu, and L. Chen, "Nafion/organic silica modified $TiO_2$ composite membrane for vanadium redox flow battery via in situ sol-gel reactions", J. Membr. Sci., 341, 149 (2009). https://doi.org/10.1016/j.memsci.2009.05.051
  26. C. H. Lin, M. C. Yang, and H. J. Wei, "Amino-silica modified Nafion membrane for vanadium redox flow battery", J. Power Sources, 282, 562 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.102
  27. J. Xi, Z. Wu, X. Qiu, and L. Chen, "Nafion/$SiO_2$ hybrid membrane for vanadium redox flow battery", J. Power Sources, 166, 531 (2007). https://doi.org/10.1016/j.jpowsour.2007.01.069
  28. S. W. Choi, T. H. Kim, S. W. Jo, J. Y. Lee, S. H. Cha, and Y. T. Hong, "Hydrocarbon membranes with high selectivity and enhanced stability for vanadium redox flow battery applications: Comparative study with sulfonated poly(ether sulfone)s and sulfonated poly(thioether ether sulfone)s", Electrochim. Acta, 259, 427 (2018). https://doi.org/10.1016/j.electacta.2017.10.121
  29. H. Zhang, X. Yan, L. Gao, L. Hu, X. Ruan, W. Zheng, and G. He, "Novel triple tertiary amine polymer-based hydrogen bond network inducing highly efficient proton-conducting channels of amphoteric membranes for high-performance vanadium redox flow battery", ACS Appl. Mater. Interfaces, 11, 5003 (2019). https://doi.org/10.1021/acsami.8b18617
  30. Q. Luo, H. Zhang, J. Chen, D. You, C. Sun, and Y. Zhang, "Preparation and characterization of Nafion/SPEEK layered composite membrane and its application in vanadium redox flow battery", J. Membr. Sci., 325, 553 (2008). https://doi.org/10.1016/j.memsci.2008.08.025
  31. Z. Mai, H. Zhang, X. Li, C. Bi, and H. Dai, "Sulfonated poly(tetramethydiphenyl ether ether ketone) membranes for vanadium redox flow battery application", J. Power Sources, 196, 482 (2011). https://doi.org/10.1016/j.jpowsour.2010.07.028
  32. Z. Xia, L. Ying, J. Fang, Y.-Y. Du, W.-M. Zhang, X. Guo, and J. Yin, "Preparation of covalently cross-linked sulfonated polybenzimidazole membranes for vanadium redox flow battery applications", J. Membr. Sci., 525, 229 (2017). https://doi.org/10.1016/j.memsci.2016.10.050
  33. L. Semiz, N. Demirci Sankir, and M. Sankir, "Influence of the basic membrane properties of the disulfonated poly(arylene ether sulfone) copolymer membranes on the vanadium redox flow battery performance", J. Membr. Sci., 468, 209 (2014). https://doi.org/10.1016/j.memsci.2014.06.019
  34. J. Dai, X. Teng, Y. Song, X. Jiang, and G. Yin, "A super thin polytetrafluoroethylene/sulfonated poly (ether ether ketone) membrane with 91% energy efficiency and high stability for vanadium redox flow battery", J. Appl. Polym. Sci., 133, 1 (2016).
  35. H. Y. Jung, M. S. Cho, T. Sadhasivam, J. Y. Kim, S. H. Roh, and Y. Kwon, "High ionic selectivity of low permeable organic composite membrane with amphiphilic polymer for vanadium redox flow batteries", Solid State Ionics, 324, 69 (2018). https://doi.org/10.1016/j.ssi.2018.06.009
  36. X. Teng, C. Sun, J. Dai, H. Liu, J. Su, and F. Li, "Solution casting Nafion/polytetrafluoroethylene membrane for vanadium redox flow battery application", Electrochim. Acta, 88, 725 (2013). https://doi.org/10.1016/j.electacta.2012.10.093
  37. Z. Li, W. Dai, L. Yu, L. Liu, J. Xi, X. Qiu, and L. Chen, "Properties investigation of sulfonated poly(ether ether ketone)/polyacrylonitrile acid-base blend membrane for vanadium redox flow battery application", ACS Appl. Mater. Interfaces, 6, 18885 (2014). https://doi.org/10.1021/am5047125
  38. X. Wei, Z. Nie, Q. Luo, B. Li, B. Chen, K. Simmons, V. Sprenkle, and W. Wang, "Nanoporous polytetrafl uoroethylene/silica composite separator as a high-performance all-vanadium redox flow battery membrane", Adv. Energy Mater., 3, 1215 (2013). https://doi.org/10.1002/aenm.201201112
  39. M. Jung, W. Lee, N. N. Krishnan, S. Kim, G. Gupta, L. Komsiyska, C. Harms, Y. Kwon, and D. Henkensmeier, "Porous-Nafion/PBI composite membranes and Nafion/PBI blend membranes for vanadium redox flow batteries", Appl. Surf. Sci., 450, 301 (2018). https://doi.org/10.1016/j.apsusc.2018.04.198
  40. T. Luo, O. David, Y. Gendel, and M. Wessling, "Porous poly(benzimidazole) membrane for all vanadium redox flow battery", J. Power Sources, 312, 45 (2016). https://doi.org/10.1016/j.jpowsour.2016.02.042
  41. Y.-J. Kim, D.-H. Kim, and M.-S. Kang, "Optimum design of pore-filled anion-exchange membranes for efficient all-vanadium redox flow batteries", Membr. J., 30, 21 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.1.21
  42. J.-M. Lee, M.-S. Lee, K.-S. Nahm, J.-D. Jeon, Y.-G. Yoon, and Y.-W. Choi, "A study on the effect of different functional groups in anion exchange membranes for vanadium redox flow batteries", Membr. J., 27, 415 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.5.415
  43. E. M. Davis, J. Kim, V. P. Oleshko, K. A. Page, and C. L. Soles, "Uncovering the structure of Nafion-$SiO_2$ hybrid ionomer membranes for prospective large-scale energy storage devices", Adv. Funct. Mater., 25, 4064 (2015). https://doi.org/10.1002/adfm.201501116
  44. B. Liu, Y. Zhang, Y. Jiang, P. Qian, and H. Shi, "High performance acid-base composite membranes from sulfonated polysulfone containing graphitic carbon nitride nanosheets for vanadium redox flow battery", J. Membr. Sci., 591, 117332 (2019). https://doi.org/10.1016/j.memsci.2019.117332
  45. S. Liu, D. Li, L. Wang, H. Yang, X. Han, and B. Liu, "Ethylenediamine-functionalized graphene oxide incorporated acid-base ion exchange membranes for vanadium redox flow battery", Electrochim. Acta, 230, 204 (2017). https://doi.org/10.1016/j.electacta.2017.01.170
  46. J. Kerres, A. Ullrich, F. Meier, and T. Haring, "Synthesis and characterization of novel acid-base polymer blends for application in membrane fuel cells", Solid State Ionics, 125, 243 (1999). https://doi.org/10.1016/S0167-2738(99)00181-2
  47. R. Niu, L. Kong, L. Zheng, H. Wang, and H. Shi, "Novel graphitic carbon nitride nanosheets/sulfonated poly(ether ether ketone) acid-base hybrid membrane for vanadium redox flow battery", J. Membr. Sci., 525, 220 (2017). https://doi.org/10.1016/j.memsci.2016.10.049
  48. S.-H. Yang, D.-S. Yang, S. J. Yoon, S. So, S.-K. Hong, D. M. Yu, and Y. T. Hong, "TEMPO radical- embedded perfluorinated sulfonic acid ionomer composites for vanadium redox flow batteries", Energy and Fuels, 34, 7631 (2020). https://doi.org/10.1021/acs.energyfuels.0c00999
  49. L. Zeng, T. S. Zhao, L. Wei, H. R. Jiang, and M. C. Wu, "Anion exchange membranes for aqueous acid-based redox flow batteries: Current status and challenges", Appl. Energy, 233, 622 (2019). https://doi.org/10.1016/j.apenergy.2018.10.063
  50. L. Hao, Y. Wang, and Y. He, "Modeling of ion crossover in an all-vanadium redox flow battery with the interfacial effect at membrane/electrode interfaces", J. Electrochem. Soc., 166, A1310 (2019). https://doi.org/10.1149/2.1061906jes
  51. B. Muriithi and D. A. Loy, "Processing, morphology, and water uptake of nafion/Ex situ stöber silica nanocomposite membranes as a function of particle size", ACS Appl. Mater. Interfaces, 4, 6766 (2012). https://doi.org/10.1021/am301931e
  52. J. Ahn, W. J. Chung, I. Pinnau, and M. D. Guiver, "Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation", J. Membr. Sci., 314, 123 (2008). https://doi.org/10.1016/j.memsci.2008.01.031
  53. S. A. Berlinger, B. D. McCloskey, and A. Z. Weber, "Inherent acidity of perfluorosulfonic acid ionomer dispersions and implications for ink aggregation", J. Phys. Chem. B, 122, 7790 (2018). https://doi.org/10.1021/acs.jpcb.8b06493
  54. A. Jansto and E. M. Davis, "Role of surface chemistry on nanoparticle dispersion and vanadium ion crossover in Nafion nanocomposite membranes", ACS Appl. Mater. Interfaces, 10, 36385 (2018). https://doi.org/10.1021/acsami.8b11297
  55. C. I. Horvat, X. Zhu, D. Turp, R. A. Vinokur, D. E. Demco, R. Fechete, O. Conradi, A. Graichen, D. Anokhin, D. A. Ivanov, and M. Moller, "Perfluorosulfonic acid ionomer - Silica composite membranes prepared using hyperbranched polyethoxysiloxane for polymer electrolyte membrane fuel cells", Int. J. Hydrogen Energy, 37, 14454 (2012). https://doi.org/10.1016/j.ijhydene.2012.07.014
  56. B. Schwenzer, S. Kim, M. Vijayakumar, Z. Yang, and J. Liu, "Correlation of structural differences between Nafion/polyaniline and Nafion/polypyrrole composite membranes and observed transport properties", J. Membr. Sci., 372, 11 (2011). https://doi.org/10.1016/j.memsci.2011.01.025