References
- Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, and J. Liu, "Electrochemical energy storage for green grid", Chem. Rev., 111, 3577 (2011). https://doi.org/10.1021/cr100290v
- A. Castillo and D. F. Gayme, "Grid-scale energy storage applications in renewable energy integration: A survey", Energy Convers. Manag., 87, 885 (2014). https://doi.org/10.1016/j.enconman.2014.07.063
- Y. Yang, S. Bremner, C. Menictas, and M. Kay, "Battery energy storage system size determination in renewable energy systems: A review", Renew. Sustain. Energy Rev., 91, 109 (2018). https://doi.org/10.1016/j.rser.2018.03.047
- H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, and Y. Ding, "Progress in electrical energy storage system: A critical review", Prog. Nat. Sci., 19(3), 291 (2009). https://doi.org/10.1016/j.pnsc.2008.07.014
- M. Skyllas-Kazacos, M. H. Chakrabarti, S. A. Hajimolana, F. S. Mjalli, and M. Saleem, "Progress in flow battery research and development", J. Electrochem. Soc., 158, 55 (2011).
- P. Leung, X. Li, C. Ponce De Leon, L. Berlouis, C. T. J. Low, and F. C. Walsh, "Progress in redox flow batteries, remaining challenges and their applications in energy storage", RSC Adv., 2(27), 10125 (2012). https://doi.org/10.1039/c2ra21342g
- M. Ulaganathan, V. Aravindan, Q. Yan, S. Madhavi, M. Skyllas-Kazacos, and T. M. Lim, "Recent advancements in all-vanadium redox flow batteries", Adv. Mater. Interfaces, 3(1), 1 (2016).
- Y. Shi, C. Eze, B. Xiong, W. He, H. Zhang, T. M. Lim, A. Ukil, and J. Zhao, "Recent development of membrane for vanadium redox flow battery applications: A review", Appl. Energy, 238, 202 (2019). https://doi.org/10.1016/j.apenergy.2018.12.087
- A. Parasuraman, T. M. Lim, C. Menictas, and M. Skyllas-Kazacos, "Review of material research and development for vanadium redox flow battery applications", Electrochim. Acta, 101, 27 (2013). https://doi.org/10.1016/j.electacta.2012.09.067
- X. Li, H. Zhang, Z. Mai, H. Zhang, and I. Vankelecom, "Ion exchange membranes for vanadium redox flow battery (VRB) applications", Energy Environ. Sci., 4, 1147 (2011). https://doi.org/10.1039/c0ee00770f
- B. Turker, S. Arroyo Klein, E. M. Hammer, B. Lenz, and L. Komsiyska, "Modeling a vanadium redox flow battery system for large scale applications", Energy Convers. Manag., 66, 26 (2013). https://doi.org/10.1016/j.enconman.2012.09.009
- J. Sun, D. Shi, H. Zhong, X. Li, and H. Zhang, "Investigations on the self-discharge process in vanadium flow battery", J. Power Sources, 294, 562 (2015). https://doi.org/10.1016/j.jpowsour.2015.06.123
- L. Li, S. Kim, W. Wang, M. Vijayakumar, Z. Nie, B. Chen, J. Zhang, G. Xia, J. Hu, G. Graff, J. Liu, and Z. Yang, "A stable vanadium redox-flow battery with high energy density for large-scale energy storage", Adv. Energy Mater., 1, 394 (2011). https://doi.org/10.1002/aenm.201100008
- J. Sarkar and S. Bhattacharyya, "Application of graphene and graphene-based materials in clean energy-related devices Minghui", Arch. Thermodyn., 33, 23 (2012). https://doi.org/10.2478/v10173-012-0009-9
- X.-Z. Yuan, C. Song, A. Platt, N. Zhao, H. Wang, H. Li, K. Fatih, and D. Jang, "A review of all-vanadium redox flow battery durability: Degradation mechanisms and mitigation strategies", Int. J. Energy Res., 43, 6599 (2019).
- B. Schwenzer, J. Zhang, S. Kim, L. Li, J. Liu, and Z. Yang, "Membrane development for vanadium redox flow batteries", ChemSusChem, 4, 1388, (2011). https://doi.org/10.1002/cssc.201100068
- B. Jiang, L. Wu, L. Yu, X. Qiu, and J. Xi, "A comparative study of Nafion series membranes for vanadium redox flow batteries", J. Membr. Sci., 510, 18 (2016). https://doi.org/10.1016/j.memsci.2016.03.007
- K. A. Mauritz and R. B. Moore, "State of understanding of Nafion", Chem. Rev., 104, 4535 (2004). https://doi.org/10.1021/cr0207123
- W. Y. Hsu and T. D. Gierke, "Ion transport and clustering in nafion perfluorinated membranes", J. Membr. Sci., 13, 307 (1983). https://doi.org/10.1016/S0376-7388(00)81563-X
- M. A. Aziz and S. Shanmugam, "Zirconium oxide nanotube-Nafion composite as high performance membrane for all vanadium redox flow battery", J. Power Sources, 337, 36 (2017). https://doi.org/10.1016/j.jpowsour.2016.10.113
- L. Yu, F. Lin, L. Xu, and J. Xi, "A recast Nafion/graphene oxide composite membrane for advanced vanadium redox flow batteries", RSC Adv., 6, 3756 (2016). https://doi.org/10.1039/C5RA24317C
- S. I. Hossain, M. A. Aziz, and S. Shanmugam, "Ultrahigh ion-selective and durable Nafion-NdZr composite layer membranes for all-vanadium redox flow batteries", ACS Sustain. Chem. Eng., 8, 1998 (2020). https://doi.org/10.1021/acssuschemeng.9b06541
- Y. Lee, S. Kim, R. Hempelmann, J. H. Jang, H.‐J. Kim, J. Han, J. Kim, and D. Henkensmeier, "Nafion membranes with a sulfonated organic additive for the use in vanadium redox flow batteries", J. Appl. Polym. Sci., 136, 8 (2019).
- B. G. Kim, T. H. Han, and C. G. Cho, "Sulfonated graphene oxide/nafion composite membrane for vanadium redox flow battery", J. Nanosci. Nanotechnol., 14, 9073 (2014). https://doi.org/10.1166/jnn.2014.10087
-
X. Teng, Y. Zhao, J. Xi, Z. Wu, X. Qiu, and L. Chen, "Nafion/organic silica modified
$TiO_2$ composite membrane for vanadium redox flow battery via in situ sol-gel reactions", J. Membr. Sci., 341, 149 (2009). https://doi.org/10.1016/j.memsci.2009.05.051 - C. H. Lin, M. C. Yang, and H. J. Wei, "Amino-silica modified Nafion membrane for vanadium redox flow battery", J. Power Sources, 282, 562 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.102
-
J. Xi, Z. Wu, X. Qiu, and L. Chen, "Nafion/
$SiO_2$ hybrid membrane for vanadium redox flow battery", J. Power Sources, 166, 531 (2007). https://doi.org/10.1016/j.jpowsour.2007.01.069 - S. W. Choi, T. H. Kim, S. W. Jo, J. Y. Lee, S. H. Cha, and Y. T. Hong, "Hydrocarbon membranes with high selectivity and enhanced stability for vanadium redox flow battery applications: Comparative study with sulfonated poly(ether sulfone)s and sulfonated poly(thioether ether sulfone)s", Electrochim. Acta, 259, 427 (2018). https://doi.org/10.1016/j.electacta.2017.10.121
- H. Zhang, X. Yan, L. Gao, L. Hu, X. Ruan, W. Zheng, and G. He, "Novel triple tertiary amine polymer-based hydrogen bond network inducing highly efficient proton-conducting channels of amphoteric membranes for high-performance vanadium redox flow battery", ACS Appl. Mater. Interfaces, 11, 5003 (2019). https://doi.org/10.1021/acsami.8b18617
- Q. Luo, H. Zhang, J. Chen, D. You, C. Sun, and Y. Zhang, "Preparation and characterization of Nafion/SPEEK layered composite membrane and its application in vanadium redox flow battery", J. Membr. Sci., 325, 553 (2008). https://doi.org/10.1016/j.memsci.2008.08.025
- Z. Mai, H. Zhang, X. Li, C. Bi, and H. Dai, "Sulfonated poly(tetramethydiphenyl ether ether ketone) membranes for vanadium redox flow battery application", J. Power Sources, 196, 482 (2011). https://doi.org/10.1016/j.jpowsour.2010.07.028
- Z. Xia, L. Ying, J. Fang, Y.-Y. Du, W.-M. Zhang, X. Guo, and J. Yin, "Preparation of covalently cross-linked sulfonated polybenzimidazole membranes for vanadium redox flow battery applications", J. Membr. Sci., 525, 229 (2017). https://doi.org/10.1016/j.memsci.2016.10.050
- L. Semiz, N. Demirci Sankir, and M. Sankir, "Influence of the basic membrane properties of the disulfonated poly(arylene ether sulfone) copolymer membranes on the vanadium redox flow battery performance", J. Membr. Sci., 468, 209 (2014). https://doi.org/10.1016/j.memsci.2014.06.019
- J. Dai, X. Teng, Y. Song, X. Jiang, and G. Yin, "A super thin polytetrafluoroethylene/sulfonated poly (ether ether ketone) membrane with 91% energy efficiency and high stability for vanadium redox flow battery", J. Appl. Polym. Sci., 133, 1 (2016).
- H. Y. Jung, M. S. Cho, T. Sadhasivam, J. Y. Kim, S. H. Roh, and Y. Kwon, "High ionic selectivity of low permeable organic composite membrane with amphiphilic polymer for vanadium redox flow batteries", Solid State Ionics, 324, 69 (2018). https://doi.org/10.1016/j.ssi.2018.06.009
- X. Teng, C. Sun, J. Dai, H. Liu, J. Su, and F. Li, "Solution casting Nafion/polytetrafluoroethylene membrane for vanadium redox flow battery application", Electrochim. Acta, 88, 725 (2013). https://doi.org/10.1016/j.electacta.2012.10.093
- Z. Li, W. Dai, L. Yu, L. Liu, J. Xi, X. Qiu, and L. Chen, "Properties investigation of sulfonated poly(ether ether ketone)/polyacrylonitrile acid-base blend membrane for vanadium redox flow battery application", ACS Appl. Mater. Interfaces, 6, 18885 (2014). https://doi.org/10.1021/am5047125
- X. Wei, Z. Nie, Q. Luo, B. Li, B. Chen, K. Simmons, V. Sprenkle, and W. Wang, "Nanoporous polytetrafl uoroethylene/silica composite separator as a high-performance all-vanadium redox flow battery membrane", Adv. Energy Mater., 3, 1215 (2013). https://doi.org/10.1002/aenm.201201112
- M. Jung, W. Lee, N. N. Krishnan, S. Kim, G. Gupta, L. Komsiyska, C. Harms, Y. Kwon, and D. Henkensmeier, "Porous-Nafion/PBI composite membranes and Nafion/PBI blend membranes for vanadium redox flow batteries", Appl. Surf. Sci., 450, 301 (2018). https://doi.org/10.1016/j.apsusc.2018.04.198
- T. Luo, O. David, Y. Gendel, and M. Wessling, "Porous poly(benzimidazole) membrane for all vanadium redox flow battery", J. Power Sources, 312, 45 (2016). https://doi.org/10.1016/j.jpowsour.2016.02.042
- Y.-J. Kim, D.-H. Kim, and M.-S. Kang, "Optimum design of pore-filled anion-exchange membranes for efficient all-vanadium redox flow batteries", Membr. J., 30, 21 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.1.21
- J.-M. Lee, M.-S. Lee, K.-S. Nahm, J.-D. Jeon, Y.-G. Yoon, and Y.-W. Choi, "A study on the effect of different functional groups in anion exchange membranes for vanadium redox flow batteries", Membr. J., 27, 415 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.5.415
-
E. M. Davis, J. Kim, V. P. Oleshko, K. A. Page, and C. L. Soles, "Uncovering the structure of Nafion-
$SiO_2$ hybrid ionomer membranes for prospective large-scale energy storage devices", Adv. Funct. Mater., 25, 4064 (2015). https://doi.org/10.1002/adfm.201501116 - B. Liu, Y. Zhang, Y. Jiang, P. Qian, and H. Shi, "High performance acid-base composite membranes from sulfonated polysulfone containing graphitic carbon nitride nanosheets for vanadium redox flow battery", J. Membr. Sci., 591, 117332 (2019). https://doi.org/10.1016/j.memsci.2019.117332
- S. Liu, D. Li, L. Wang, H. Yang, X. Han, and B. Liu, "Ethylenediamine-functionalized graphene oxide incorporated acid-base ion exchange membranes for vanadium redox flow battery", Electrochim. Acta, 230, 204 (2017). https://doi.org/10.1016/j.electacta.2017.01.170
- J. Kerres, A. Ullrich, F. Meier, and T. Haring, "Synthesis and characterization of novel acid-base polymer blends for application in membrane fuel cells", Solid State Ionics, 125, 243 (1999). https://doi.org/10.1016/S0167-2738(99)00181-2
- R. Niu, L. Kong, L. Zheng, H. Wang, and H. Shi, "Novel graphitic carbon nitride nanosheets/sulfonated poly(ether ether ketone) acid-base hybrid membrane for vanadium redox flow battery", J. Membr. Sci., 525, 220 (2017). https://doi.org/10.1016/j.memsci.2016.10.049
- S.-H. Yang, D.-S. Yang, S. J. Yoon, S. So, S.-K. Hong, D. M. Yu, and Y. T. Hong, "TEMPO radical- embedded perfluorinated sulfonic acid ionomer composites for vanadium redox flow batteries", Energy and Fuels, 34, 7631 (2020). https://doi.org/10.1021/acs.energyfuels.0c00999
- L. Zeng, T. S. Zhao, L. Wei, H. R. Jiang, and M. C. Wu, "Anion exchange membranes for aqueous acid-based redox flow batteries: Current status and challenges", Appl. Energy, 233, 622 (2019). https://doi.org/10.1016/j.apenergy.2018.10.063
- L. Hao, Y. Wang, and Y. He, "Modeling of ion crossover in an all-vanadium redox flow battery with the interfacial effect at membrane/electrode interfaces", J. Electrochem. Soc., 166, A1310 (2019). https://doi.org/10.1149/2.1061906jes
- B. Muriithi and D. A. Loy, "Processing, morphology, and water uptake of nafion/Ex situ stöber silica nanocomposite membranes as a function of particle size", ACS Appl. Mater. Interfaces, 4, 6766 (2012). https://doi.org/10.1021/am301931e
- J. Ahn, W. J. Chung, I. Pinnau, and M. D. Guiver, "Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation", J. Membr. Sci., 314, 123 (2008). https://doi.org/10.1016/j.memsci.2008.01.031
- S. A. Berlinger, B. D. McCloskey, and A. Z. Weber, "Inherent acidity of perfluorosulfonic acid ionomer dispersions and implications for ink aggregation", J. Phys. Chem. B, 122, 7790 (2018). https://doi.org/10.1021/acs.jpcb.8b06493
- A. Jansto and E. M. Davis, "Role of surface chemistry on nanoparticle dispersion and vanadium ion crossover in Nafion nanocomposite membranes", ACS Appl. Mater. Interfaces, 10, 36385 (2018). https://doi.org/10.1021/acsami.8b11297
- C. I. Horvat, X. Zhu, D. Turp, R. A. Vinokur, D. E. Demco, R. Fechete, O. Conradi, A. Graichen, D. Anokhin, D. A. Ivanov, and M. Moller, "Perfluorosulfonic acid ionomer - Silica composite membranes prepared using hyperbranched polyethoxysiloxane for polymer electrolyte membrane fuel cells", Int. J. Hydrogen Energy, 37, 14454 (2012). https://doi.org/10.1016/j.ijhydene.2012.07.014
- B. Schwenzer, S. Kim, M. Vijayakumar, Z. Yang, and J. Liu, "Correlation of structural differences between Nafion/polyaniline and Nafion/polypyrrole composite membranes and observed transport properties", J. Membr. Sci., 372, 11 (2011). https://doi.org/10.1016/j.memsci.2011.01.025