References
- H. R. Lee, S. M. Ha, Y. Yoo, and S. Lee, The latest research trend of thermally conductive polymer composites, Polym. Sci. Technol., 24, 30-37 (2013).
- G. W. Lee, M. Park, J. Kim, J. I. Lee and H. G. Yoon, Enhanced thermal conductivity of polymer composites filled with hybrid filler, Compos. Part A Appl. Sci. Manuf., 37, 727-734 (2006). https://doi.org/10.1016/j.compositesa.2005.07.006
- K. Sanada, Y. Tada, and Y. Shindo, Thermal conductivity of polymer composites with close-packed structure of nano and micro fillers, Compos. Part A Appl. Sci. Manuf., 40, 724-730 (2009). https://doi.org/10.1016/j.compositesa.2009.02.024
- N. K. Mahanta, M. R. Loos, I. M. Zlocozower, and A. R. Abramson, Graphite-graphene hybrid filler system for high thermal conductivity of epoxy composites, Mater. Res. Soc., 30, 959-966 (2015). https://doi.org/10.1557/jmr.2015.68
- J. S. Park, Y. J. An, K. Shin, J. H. Han, and C. S. Lee, Enhanced thermal conductivity of epoxy/three-dimensional carbon hybrid filler composites for effective heat dissipation, RSC Adv., 5, 46989-46996 (2015). https://doi.org/10.1039/C5RA05817A
- Y. Kim, J. Jung, H. Yeo, N. You, S. G. Jang, S. Ahn, S. H. Lee, and M. Goh, Development of highly thermal conductive liquid crystalline epoxy resins for high thermal dissipation composites, J. Korean Soc. Compos. Mater., 30, 1-6 (2017).
- S. Hwangbo and S. H. Cho, Thermal decomposition behavior of LCT composites using boron nitride filler, J. Text. Eng., 55, 35-40 (2018).
- J. C. Zhao, F. P. Du, X. P. Zhou, W. Cui, X. M. Wang, H. Zhu, X. L. Xie, and Y. W. Mai, Thermal conductive and electrical properties of polyurethane/hyperbranched poly (urea-urethane)-grafted multi-walled carbon nanotube composites, Compos. Part B Eng., 42, 2111-2116 (2011). https://doi.org/10.1016/j.compositesb.2011.05.005
- E. Cakmakci, C. Kocyigit, S. Cakir, A. Durmus, and M. V. Kahraman, Preparation and characterization of thermally conductive thermoplastic polyurethane/h-BN nanocomposites, Polym. Compos., 35, 530-538 (2014). https://doi.org/10.1002/pc.22692
- M. Li, H. Cui, Q. Li, and Q. Zhang, Thermally conductive and flame-retardant polyamide 6 composites, J. Reinf. Plast. Compos., 35, 435-444 (2016). https://doi.org/10.1177/0731684415618538
- K. Kim, M. Kim, and J. Kim, Fabrication of UV-curable polyurethane acrylate composites containing surface-modified boron nitride for underwater sonar encapsulant application, Ceram. Int., 40, 10933-10943 (2014). https://doi.org/10.1016/j.ceramint.2014.03.092
- J. Lee, J. Jun, W. Na, J. Oh, Y. Kim, W. Kim, and J. Jang, Fabrication of sinter-free conductive Cu paste using sub-10 nm copper nanoparticles, J. Mater. Chem. C, 5, 12507-12512 (2017). https://doi.org/10.1039/C7TC02893H
- J. Vasiljevic, I. Jerman, G. Jaksa, J. Alongi, G. Malucelli, M. Zorko, B. Tomsic, and B. Simoncic, Functionalization of cellulose fibres with DOPO-polysilsesquioxane flame retardant nanocoating, Cellulose, 22, 1893-1910 (2015). https://doi.org/10.1007/s10570-015-0599-x
- A. K. Mishra, D. K. Chattopadhyay, B. Sreedhar, and K. V. S. N. Raju, FT-IR and XPS studies of polyurethane-urea-imide coatings, Prog. Org. Coat., 55, 231-243 (2006). https://doi.org/10.1016/j.porgcoat.2005.11.007
- T. Oh, K. Lee, K. Kim, and C. Choi, Comparison of the nano-structure due to C=O and C=C double bond, J. Korean Phys. Soc., 45, 705-708 (2004).
- T. W. Pechar, G. L. Wilkes, B. Zhou, and N. Luo, Characterization of soy-based polyurethane networks prepared with different diisocyanates and their blends with petroleum-based polyols, J. of Appl. Polym. Sci., 106, 2350-2362 (2007). https://doi.org/10.1002/app.26569
- Y. Lu, and R. C. Larock, Soybean-oil-based waterborne polyurethane dispersions: effects of polyol functionality and hard segment content on properties, Biomacromolecules, 9, 3332-3340 (2008). https://doi.org/10.1021/bm801030g
- D. Cai, K. Yusoh, and M. Song, The mechanical properties and morphology of a graphite oxide nanoplatelet/polyurethane composite, Nanotechnology, 20, 1-5 (2009).
-
H. Kato, T. Hirano, A. Matsuo, Y. Kawamura, and A. Inoue, High strength and good ductility of
$Zr_{55}Al_{10}Ni_5Cu_{30}$ bulk glass containing ZrC particles, Scr. Mater., 43, 503-507 (2000). https://doi.org/10.1016/S1359-6462(00)00452-8 - A. Eceiza, M. D. Martin, K. de la Caba, G. Kortaberria, N. Gabilondo, M.A. Corcuera, and I. Mondragon, Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure: Mechanical and thermal properties, Polym. Eng. Sci., 48, 297-306 (2008). https://doi.org/10.1002/pen.20905
- P. Krol, B. Krol, K. Pielichowska, and M. Spirkova, Composites prepared from the waterborne polyurethane cationomers-modified graphene. Part I. Synthesis, structure, and physicochemical properties, Colloid Polym. Sci., 293, 421-431 (2015). https://doi.org/10.1007/s00396-014-3417-3
- J. M. Cervantes-Uc, J. I. Moo Espinosa, J. V. Cauich-Rodriguez, A. Avila-Ortega, H. Vazquez-Torres, A. Marcos-Fernandez, and J. San Roman, TGA/FTIR studies of segmented aliphatic polyurethanes and their nanocomposites prepared with commercial montmorillonites, Polym. Degrad. Stab., 94, 1666-1677 (2009). https://doi.org/10.1016/j.polymdegradstab.2009.06.022
- Zoran S. Petrovic, Zoltan Zavargo, Joseph H. Flyn, and William J. Macknight, Thermal degradation of segmented polyurethanes, J. Appl. Polym. Sci., 51, 1087-1095 (1994). https://doi.org/10.1002/app.1994.070510615
- S. H. Liu, C. F. Kuan, H. C. Kuan, M. Y. Shen, J. M. Yang, and C. L. Chiang, Preparation and flame retardance of polyurethane composites containing microencapsulated melamine polyphosphate, Polymers, 9, 407-420 (2017). https://doi.org/10.3390/polym9090407