DOI QR코드

DOI QR Code

Flame Retardant and Heat Radiating Composite Consisting of Polyurethane and Modified Boron Nitride

폴리우레탄과 개질된 질화붕소로 이루어진 난연성 방열 복합체

  • Kim, Min-gyu (Department of Polymer Science and Engineering, Pusan National University) ;
  • Lee, Chang-rock (Department of Polymer Science and Engineering, Pusan National University) ;
  • Jo, Nam-Ju (Department of Polymer Science and Engineering, Pusan National University)
  • 김민규 (부산대학교 고분자공학과) ;
  • 이창록 (부산대학교 고분자공학과) ;
  • 조남주 (부산대학교 고분자공학과)
  • Received : 2020.07.22
  • Accepted : 2020.08.07
  • Published : 2020.10.12

Abstract

Polyurethane/modified boron nitride (PU/m-BN) composite was synthesized from the poly(tetra methylene glycol) (PTMG), 4,4'-methylenebis(phenyl isocyanate) (MDI), and modified boron nitride (m-BN). The modification of boron nitride and synthesis of PU/m-BN composite were confirmed by Fourier transform infrared (FT-IR) spectroscopic analyses. The mechanical properties of the PU/m-BN composites were measured using the universal testing machine (UTM) and the thermal properties of the composites were investigated ser flash analysis (LFA) and UL94 measurements. As a result, the thermal conductivity of the polyurethane composite increased to 1.19 W/m·K, and the flame retardancy of the easy to burn polyurethane, which was not self-extinguishing was improved to UL94 V-1 grade.

기존의 방열필름의 연소문제를 해결하기 위해 poly(tetra methylene glycol) (PTMG), 4,4'-methylenebis(phenyl isocyanate) (MDI)와 유기인이 도입된 실란 커플링제로 표면개질한 질화붕소를 사용하여 폴리우레탄과 개질된 질화붕소로 이루어진 복합체를 제작하였다. Fourier transform-infrared (FT-IR) 분광 분석을 통해 질화붕소의 개질과 복합체의 합성 여부를 확인하였다. 또 universal testing machine (UTM) 측정을 통해 개질된 질화붕소의 함량에 따른 복합체의 기계적 물성 변화를 확인하였으며, layser flash analysis (LFA)와 UL94 측정을 통해 열적 특성을 조사하였다. 그 결과, 복합체의 열전도도가 1.19 W/m·K로 증가하였으며, 자기소화성이 없어 타기 쉬운 폴리우레탄의 난연성이 UL94 V-1 등급으로 향상되었다.

Keywords

References

  1. H. R. Lee, S. M. Ha, Y. Yoo, and S. Lee, The latest research trend of thermally conductive polymer composites, Polym. Sci. Technol., 24, 30-37 (2013).
  2. G. W. Lee, M. Park, J. Kim, J. I. Lee and H. G. Yoon, Enhanced thermal conductivity of polymer composites filled with hybrid filler, Compos. Part A Appl. Sci. Manuf., 37, 727-734 (2006). https://doi.org/10.1016/j.compositesa.2005.07.006
  3. K. Sanada, Y. Tada, and Y. Shindo, Thermal conductivity of polymer composites with close-packed structure of nano and micro fillers, Compos. Part A Appl. Sci. Manuf., 40, 724-730 (2009). https://doi.org/10.1016/j.compositesa.2009.02.024
  4. N. K. Mahanta, M. R. Loos, I. M. Zlocozower, and A. R. Abramson, Graphite-graphene hybrid filler system for high thermal conductivity of epoxy composites, Mater. Res. Soc., 30, 959-966 (2015). https://doi.org/10.1557/jmr.2015.68
  5. J. S. Park, Y. J. An, K. Shin, J. H. Han, and C. S. Lee, Enhanced thermal conductivity of epoxy/three-dimensional carbon hybrid filler composites for effective heat dissipation, RSC Adv., 5, 46989-46996 (2015). https://doi.org/10.1039/C5RA05817A
  6. Y. Kim, J. Jung, H. Yeo, N. You, S. G. Jang, S. Ahn, S. H. Lee, and M. Goh, Development of highly thermal conductive liquid crystalline epoxy resins for high thermal dissipation composites, J. Korean Soc. Compos. Mater., 30, 1-6 (2017).
  7. S. Hwangbo and S. H. Cho, Thermal decomposition behavior of LCT composites using boron nitride filler, J. Text. Eng., 55, 35-40 (2018).
  8. J. C. Zhao, F. P. Du, X. P. Zhou, W. Cui, X. M. Wang, H. Zhu, X. L. Xie, and Y. W. Mai, Thermal conductive and electrical properties of polyurethane/hyperbranched poly (urea-urethane)-grafted multi-walled carbon nanotube composites, Compos. Part B Eng., 42, 2111-2116 (2011). https://doi.org/10.1016/j.compositesb.2011.05.005
  9. E. Cakmakci, C. Kocyigit, S. Cakir, A. Durmus, and M. V. Kahraman, Preparation and characterization of thermally conductive thermoplastic polyurethane/h-BN nanocomposites, Polym. Compos., 35, 530-538 (2014). https://doi.org/10.1002/pc.22692
  10. M. Li, H. Cui, Q. Li, and Q. Zhang, Thermally conductive and flame-retardant polyamide 6 composites, J. Reinf. Plast. Compos., 35, 435-444 (2016). https://doi.org/10.1177/0731684415618538
  11. K. Kim, M. Kim, and J. Kim, Fabrication of UV-curable polyurethane acrylate composites containing surface-modified boron nitride for underwater sonar encapsulant application, Ceram. Int., 40, 10933-10943 (2014). https://doi.org/10.1016/j.ceramint.2014.03.092
  12. J. Lee, J. Jun, W. Na, J. Oh, Y. Kim, W. Kim, and J. Jang, Fabrication of sinter-free conductive Cu paste using sub-10 nm copper nanoparticles, J. Mater. Chem. C, 5, 12507-12512 (2017). https://doi.org/10.1039/C7TC02893H
  13. J. Vasiljevic, I. Jerman, G. Jaksa, J. Alongi, G. Malucelli, M. Zorko, B. Tomsic, and B. Simoncic, Functionalization of cellulose fibres with DOPO-polysilsesquioxane flame retardant nanocoating, Cellulose, 22, 1893-1910 (2015). https://doi.org/10.1007/s10570-015-0599-x
  14. A. K. Mishra, D. K. Chattopadhyay, B. Sreedhar, and K. V. S. N. Raju, FT-IR and XPS studies of polyurethane-urea-imide coatings, Prog. Org. Coat., 55, 231-243 (2006). https://doi.org/10.1016/j.porgcoat.2005.11.007
  15. T. Oh, K. Lee, K. Kim, and C. Choi, Comparison of the nano-structure due to C=O and C=C double bond, J. Korean Phys. Soc., 45, 705-708 (2004).
  16. T. W. Pechar, G. L. Wilkes, B. Zhou, and N. Luo, Characterization of soy-based polyurethane networks prepared with different diisocyanates and their blends with petroleum-based polyols, J. of Appl. Polym. Sci., 106, 2350-2362 (2007). https://doi.org/10.1002/app.26569
  17. Y. Lu, and R. C. Larock, Soybean-oil-based waterborne polyurethane dispersions: effects of polyol functionality and hard segment content on properties, Biomacromolecules, 9, 3332-3340 (2008). https://doi.org/10.1021/bm801030g
  18. D. Cai, K. Yusoh, and M. Song, The mechanical properties and morphology of a graphite oxide nanoplatelet/polyurethane composite, Nanotechnology, 20, 1-5 (2009).
  19. H. Kato, T. Hirano, A. Matsuo, Y. Kawamura, and A. Inoue, High strength and good ductility of $Zr_{55}Al_{10}Ni_5Cu_{30}$ bulk glass containing ZrC particles, Scr. Mater., 43, 503-507 (2000). https://doi.org/10.1016/S1359-6462(00)00452-8
  20. A. Eceiza, M. D. Martin, K. de la Caba, G. Kortaberria, N. Gabilondo, M.A. Corcuera, and I. Mondragon, Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure: Mechanical and thermal properties, Polym. Eng. Sci., 48, 297-306 (2008). https://doi.org/10.1002/pen.20905
  21. P. Krol, B. Krol, K. Pielichowska, and M. Spirkova, Composites prepared from the waterborne polyurethane cationomers-modified graphene. Part I. Synthesis, structure, and physicochemical properties, Colloid Polym. Sci., 293, 421-431 (2015). https://doi.org/10.1007/s00396-014-3417-3
  22. J. M. Cervantes-Uc, J. I. Moo Espinosa, J. V. Cauich-Rodriguez, A. Avila-Ortega, H. Vazquez-Torres, A. Marcos-Fernandez, and J. San Roman, TGA/FTIR studies of segmented aliphatic polyurethanes and their nanocomposites prepared with commercial montmorillonites, Polym. Degrad. Stab., 94, 1666-1677 (2009). https://doi.org/10.1016/j.polymdegradstab.2009.06.022
  23. Zoran S. Petrovic, Zoltan Zavargo, Joseph H. Flyn, and William J. Macknight, Thermal degradation of segmented polyurethanes, J. Appl. Polym. Sci., 51, 1087-1095 (1994). https://doi.org/10.1002/app.1994.070510615
  24. S. H. Liu, C. F. Kuan, H. C. Kuan, M. Y. Shen, J. M. Yang, and C. L. Chiang, Preparation and flame retardance of polyurethane composites containing microencapsulated melamine polyphosphate, Polymers, 9, 407-420 (2017). https://doi.org/10.3390/polym9090407