Browse > Article
http://dx.doi.org/10.14478/ace.2020.1056

Flame Retardant and Heat Radiating Composite Consisting of Polyurethane and Modified Boron Nitride  

Kim, Min-gyu (Department of Polymer Science and Engineering, Pusan National University)
Lee, Chang-rock (Department of Polymer Science and Engineering, Pusan National University)
Jo, Nam-Ju (Department of Polymer Science and Engineering, Pusan National University)
Publication Information
Applied Chemistry for Engineering / v.31, no.5, 2020 , pp. 487-494 More about this Journal
Abstract
Polyurethane/modified boron nitride (PU/m-BN) composite was synthesized from the poly(tetra methylene glycol) (PTMG), 4,4'-methylenebis(phenyl isocyanate) (MDI), and modified boron nitride (m-BN). The modification of boron nitride and synthesis of PU/m-BN composite were confirmed by Fourier transform infrared (FT-IR) spectroscopic analyses. The mechanical properties of the PU/m-BN composites were measured using the universal testing machine (UTM) and the thermal properties of the composites were investigated ser flash analysis (LFA) and UL94 measurements. As a result, the thermal conductivity of the polyurethane composite increased to 1.19 W/m·K, and the flame retardancy of the easy to burn polyurethane, which was not self-extinguishing was improved to UL94 V-1 grade.
Keywords
Heat radiating material; Thermal conductivity; Flame retardancy; Polyurethane composite; Modified boron nitride;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. Hwangbo and S. H. Cho, Thermal decomposition behavior of LCT composites using boron nitride filler, J. Text. Eng., 55, 35-40 (2018).
2 J. C. Zhao, F. P. Du, X. P. Zhou, W. Cui, X. M. Wang, H. Zhu, X. L. Xie, and Y. W. Mai, Thermal conductive and electrical properties of polyurethane/hyperbranched poly (urea-urethane)-grafted multi-walled carbon nanotube composites, Compos. Part B Eng., 42, 2111-2116 (2011).   DOI
3 E. Cakmakci, C. Kocyigit, S. Cakir, A. Durmus, and M. V. Kahraman, Preparation and characterization of thermally conductive thermoplastic polyurethane/h-BN nanocomposites, Polym. Compos., 35, 530-538 (2014).   DOI
4 M. Li, H. Cui, Q. Li, and Q. Zhang, Thermally conductive and flame-retardant polyamide 6 composites, J. Reinf. Plast. Compos., 35, 435-444 (2016).   DOI
5 K. Kim, M. Kim, and J. Kim, Fabrication of UV-curable polyurethane acrylate composites containing surface-modified boron nitride for underwater sonar encapsulant application, Ceram. Int., 40, 10933-10943 (2014).   DOI
6 J. Lee, J. Jun, W. Na, J. Oh, Y. Kim, W. Kim, and J. Jang, Fabrication of sinter-free conductive Cu paste using sub-10 nm copper nanoparticles, J. Mater. Chem. C, 5, 12507-12512 (2017).   DOI
7 J. Vasiljevic, I. Jerman, G. Jaksa, J. Alongi, G. Malucelli, M. Zorko, B. Tomsic, and B. Simoncic, Functionalization of cellulose fibres with DOPO-polysilsesquioxane flame retardant nanocoating, Cellulose, 22, 1893-1910 (2015).   DOI
8 A. K. Mishra, D. K. Chattopadhyay, B. Sreedhar, and K. V. S. N. Raju, FT-IR and XPS studies of polyurethane-urea-imide coatings, Prog. Org. Coat., 55, 231-243 (2006).   DOI
9 T. Oh, K. Lee, K. Kim, and C. Choi, Comparison of the nano-structure due to C=O and C=C double bond, J. Korean Phys. Soc., 45, 705-708 (2004).
10 T. W. Pechar, G. L. Wilkes, B. Zhou, and N. Luo, Characterization of soy-based polyurethane networks prepared with different diisocyanates and their blends with petroleum-based polyols, J. of Appl. Polym. Sci., 106, 2350-2362 (2007).   DOI
11 Y. Lu, and R. C. Larock, Soybean-oil-based waterborne polyurethane dispersions: effects of polyol functionality and hard segment content on properties, Biomacromolecules, 9, 3332-3340 (2008).   DOI
12 D. Cai, K. Yusoh, and M. Song, The mechanical properties and morphology of a graphite oxide nanoplatelet/polyurethane composite, Nanotechnology, 20, 1-5 (2009).
13 H. Kato, T. Hirano, A. Matsuo, Y. Kawamura, and A. Inoue, High strength and good ductility of $Zr_{55}Al_{10}Ni_5Cu_{30}$ bulk glass containing ZrC particles, Scr. Mater., 43, 503-507 (2000).   DOI
14 Zoran S. Petrovic, Zoltan Zavargo, Joseph H. Flyn, and William J. Macknight, Thermal degradation of segmented polyurethanes, J. Appl. Polym. Sci., 51, 1087-1095 (1994).   DOI
15 A. Eceiza, M. D. Martin, K. de la Caba, G. Kortaberria, N. Gabilondo, M.A. Corcuera, and I. Mondragon, Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure: Mechanical and thermal properties, Polym. Eng. Sci., 48, 297-306 (2008).   DOI
16 P. Krol, B. Krol, K. Pielichowska, and M. Spirkova, Composites prepared from the waterborne polyurethane cationomers-modified graphene. Part I. Synthesis, structure, and physicochemical properties, Colloid Polym. Sci., 293, 421-431 (2015).   DOI
17 J. M. Cervantes-Uc, J. I. Moo Espinosa, J. V. Cauich-Rodriguez, A. Avila-Ortega, H. Vazquez-Torres, A. Marcos-Fernandez, and J. San Roman, TGA/FTIR studies of segmented aliphatic polyurethanes and their nanocomposites prepared with commercial montmorillonites, Polym. Degrad. Stab., 94, 1666-1677 (2009).   DOI
18 G. W. Lee, M. Park, J. Kim, J. I. Lee and H. G. Yoon, Enhanced thermal conductivity of polymer composites filled with hybrid filler, Compos. Part A Appl. Sci. Manuf., 37, 727-734 (2006).   DOI
19 S. H. Liu, C. F. Kuan, H. C. Kuan, M. Y. Shen, J. M. Yang, and C. L. Chiang, Preparation and flame retardance of polyurethane composites containing microencapsulated melamine polyphosphate, Polymers, 9, 407-420 (2017).   DOI
20 H. R. Lee, S. M. Ha, Y. Yoo, and S. Lee, The latest research trend of thermally conductive polymer composites, Polym. Sci. Technol., 24, 30-37 (2013).
21 K. Sanada, Y. Tada, and Y. Shindo, Thermal conductivity of polymer composites with close-packed structure of nano and micro fillers, Compos. Part A Appl. Sci. Manuf., 40, 724-730 (2009).   DOI
22 N. K. Mahanta, M. R. Loos, I. M. Zlocozower, and A. R. Abramson, Graphite-graphene hybrid filler system for high thermal conductivity of epoxy composites, Mater. Res. Soc., 30, 959-966 (2015).   DOI
23 Y. Kim, J. Jung, H. Yeo, N. You, S. G. Jang, S. Ahn, S. H. Lee, and M. Goh, Development of highly thermal conductive liquid crystalline epoxy resins for high thermal dissipation composites, J. Korean Soc. Compos. Mater., 30, 1-6 (2017).
24 J. S. Park, Y. J. An, K. Shin, J. H. Han, and C. S. Lee, Enhanced thermal conductivity of epoxy/three-dimensional carbon hybrid filler composites for effective heat dissipation, RSC Adv., 5, 46989-46996 (2015).   DOI