DOI QR코드

DOI QR Code

Optimization of PRISM parameters using the SCEM-UA algorithm for gridded daily time series precipitation

시계열 강수량 공간화를 위한 SCEM-UA 기반의 PRISM 매개변수 최적화

  • Kim, Yong-Tak (Department of Civil and Environmental Engineering, Sejong University) ;
  • Park, Moonhyung (Korea Institute of Construction Technology) ;
  • Kwon, Hyun-Han (Department of Civil and Environmental Engineering, Sejong University)
  • 김용탁 (세종대학교 건설환경공학과) ;
  • 박문형 (한국건설기술연구원) ;
  • 권현한 (세종대학교 건설환경공학과)
  • Received : 2020.08.21
  • Accepted : 2020.09.04
  • Published : 2020.10.31

Abstract

Long-term high-resolution hydro-meteorological data has been recognized as an essential element in establishing the water resources plan. The increasing demand for spatial precipitation in various areas such as climate, hydrology, geography, ecology, and environment is apparent. However, potential limitations of the existing area-weighted and numerical interpolation methods for interpolating precipitation in high altitude areas remains less explored. The proposed PRISM (Precipitation-Elevation Regressions on Independent Slopes Model) model can produce gridded precipitation that can adequately consider topographic characteristics (e.g., slope and altitude), which are not substantially included in the existing interpolation techniques. In this study, the PRISM model was optimized with SCEM-UA (Shuffled Complex Evolution Metropolis-University of Arizona) to produce daily gridded precipitation. As a result, the minimum impact radius was calculated 9.10 km and the maximum 34.99 km. The altitude of coastal weighted was 681.03 m, the minimum and maximum distances from coastal were 9.85 km and 38.05 km. The distance weighting factor was calculated to be about 0.87, confirming that the PRISM result was very sensitive to distance. The results showed that the proposed PRISM model could reproduce the observed statistical properties reasonably well.

상세한 수문기상자료 구축은 수자원 활용 계획을 수립하고 대응하는 데 있어 필수적인 요소로 인식되고 있다. 기후, 수문, 지리 및 환경 등의 다양한 영역에서 신뢰할 수 있는 공간적 강우량의 요구가 증가하고 있다. 지형의 약 70%가 산악 지형인 우리나라의 경우 기존의 면적가중 및 수치내삽 방법은 고도가 높은 지역의 기상인자를 추정하는 데 한계가 있는 것으로 평가 되고 있다. PRISM 기법은 일반적인 공간보간 방법에 부족한 지형적 특성을 반영한 격자형태의 기상인자를 생산할 수 있는 유용한 모형으로서 본 연구에서는 SCEM-UA 기법을 기반으로 일단위 시계열에서의 PRISM 모형을 최적화 수행하였으며, 그 결과 최소영향반경은 9.10 km, 최대는 34.99 km로 산정되었으며, 해양가중치에서 고도기준은 681.03 m, 최소 및 최대거리는 각각 9.85 km, 38.05 km가 추정되었다. 거리가중치계수는 약 0.87로 산정되어 PRISM 모의 결과가 거리에 매우 민감하다는 것을 확인하였다. 또한, 다양한 통계적 검정을 통해 생산된 강수 시계열이 관측시계열과 비교하여 유사한 특성을 갖는 것을 확인하였다.

Keywords

References

  1. Bagirov, A.M., Rubinov, A.M., and Zhang, J. (2005). "Local optimization method with global multidimensional search." Journal of Global Optimization, Vol. 32, No. 2, pp. 161-179. https://doi.org/10.1007/s10898-004-2700-0
  2. Barton, R.R., and Ivey Jr, J.S. (1996). "Nelder-mead simplex modifications for simulation optimization." Management Science, Vol. 42, No. 7, pp. 954-973. https://doi.org/10.1287/mnsc.42.7.954
  3. Basist, A., Bell, G.D., and Meentemeyer, V. (1994). "Statistical relationships between topography and precipitation patterns." Journal of climate, Vol. 7, No. 9, pp. 1305-1315. https://doi.org/10.1175/1520-0442(1994)007<1305:SRBTAP>2.0.CO;2
  4. Cui, L.J., and Kuczera, G. (2003). "Optimizing urban water supply headworks using probabilistic search methods." Journal of water resources planning and management, Vol. 129, No. 5, pp. 380-387. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:5(380)
  5. Daly, C., Gibson, W.P., Taylor, G.H., Johnson, G.L., and Pasteris, P. (2002). "A knowledge-based approach to the statistical mapping of climate." Climate research, Vol. 22, No. 2, pp. 99-113. https://doi.org/10.3354/cr022099
  6. Daly, C., Halbleib, M., Smith, J.I., Gibson, W.P., Doggett, M.K., Taylor, G.H., Curtis, J., and Pasteris, P.P. (2008). "Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States." International Journal of Climatology: a Journal of the Royal Meteorological Society, Vol. 28, No. 15, pp. 2031-2064. https://doi.org/10.1002/joc.1688
  7. Daly, C., Neilson, R.P., and Phillips, D.L. (1994). "A statistical-topographic model for mapping climatological precipitation over mountainous terrain." Journal of applied meteorology, Vol. 33, No. 2, pp. 140-158. https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2
  8. Duan, Q.Y., Gupta, V.K., and Sorooshian, S. (1993). "Shuffled complex evolution approach for effective and efficient global minimization." Journal of optimization theory and applications, Vol. 76, No. 3, pp. 501-521. https://doi.org/10.1007/BF00939380
  9. Duan, Q.Y., Sorooshian, S., and Gupta, V. (1992). "Effective and efficient global optimization for conceptual rainfall-runoff models." Water resources research, Vol. 28, No. 4, pp. 1015-1031. https://doi.org/10.1029/91WR02985
  10. Eum, H.I., and Kim, J.P. (2015). "Generation of high-resolution gridded climate variables using modified PRISM over South Korea." Proceedings of the Korea Water Resources Association Conference, KWRA, pp. 10-13.
  11. Gan, T.Y., and Biftu, G.F. (1996). "Automatic calibration of conceptual rainfall‐runoff models: Optimization algorithms, catchment conditions, and model structure." Water resources research, Vol. 32, No. 12, pp. 3513-3524. https://doi.org/10.1029/96WR02195
  12. Gyalistras, D. (2003). "Development and validation of a high-resolution monthly gridded temperature and precipitation data set for Switzerland (1951-2000)." Climate Research, Vol. 25, No. 1, pp. 55-83. https://doi.org/10.3354/cr025055
  13. Hasenauer, H., Merganicova, K., Petritsch, R., Pietsch, S.A., and Thornton, P.E. (2003). "Validating daily climate interpolations over complex terrain in Austria." Agricultural and Forest Meteorology, Vol. 119, No. 1-2, pp. 87-107. https://doi.org/10.1016/S0168-1923(03)00114-X
  14. Hooke, R., and Jeeves, T.A. (1961). ""Direct Search" Solution of numerical and statistical problems." Journal of the ACM, Vol. 8, No. 2, pp. 212-229. https://doi.org/10.1145/321062.321069
  15. Kalin, L., Isik, S., Schoonover, J.E., and Lockaby, B.G. (2010) "Predicting water quality in unmonitored watersheds using artificial neural networks." Journal of environmental quality, Vol. 39, No. 4, pp. 1429-1440. https://doi.org/10.2134/jeq2009.0441
  16. Khambampati, A.K., Ijaz, U.Z., Lee, J.S., Kim, S., and Kim, K.Y. (2010). "Phase boundary estimation in electrical impedance tomography using the Hooke and Jeeves pattern search method." Measurement Science and Technology, Vol. 21, No. 3, p. 035501. https://doi.org/10.1088/0957-0233/21/3/035501
  17. Kim, J.P., Kim, G., and Lee, W.S. (2012). "Estimation of monthly areal precipitation using Daymet and PRISM." Journal of the Korean Society of Hazard Mitigation, Vol. 12, No. 5, pp. 83-90. https://doi.org/10.9798/KOSHAM.2012.12.5.083
  18. Kim, Y.T., Kim, J.Y., Lee, J.C., and Kwon, H.H. (2017). "An hourly extreme data estimation method developed using nonstationary bayesian beta distribution." Journal of Korean Society on Water Environment, Vol. 33, No. 3, pp. 256-272. https://doi.org/10.15681/KSWE.2017.33.3.256
  19. Kittel, T.G.F., Royle, J.A., Daly, C., Rosenbloom, N.A., Gibson, W.P., Fisher, H.H., Schimel, D., Berliner, L., and Participants, V.E.M.A.P. (1997). "A gridded historical (1895-1993) bioclimate dataset for the conterminous United States." Proceedings of the 10th conference on applied climatology, Boston, M.A., U.S., Vol. 20, No. 24, pp. 20-24. AMS.
  20. Kumar, R., Kabamba, P.T., and Hyland, D.C. (2004). "Analysis and parameter selection for an adaptive random search algorithm." 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No. 04CH37601), IEEE, Nassau, Bahamas, Vol. 5, pp. 5322-5327.
  21. Liong, S.Y., Khu, S.T., and Chan, W.T. (1996). "Construction of multiobjective function response surface with genetic algorithm and neural network." Proceedings of the International Conference on Water Resources and Environmental Research, ICWREE, Vol. 2931, pp. 3138.
  22. Marquinez, J., Lastra, J., and Garcia, P. (2003). "Estimation models for precipitation in mountainous regions: The use of GIS and multivariate analysis." Journal of hydrology, Vol. 270, No. 1-2, pp. 1-11. https://doi.org/10.1016/S0022-1694(02)00110-5
  23. Mkhwanazi, M., Chavez, J.L., and Rambikur, E.H. (2012). "Comparison of large aperture scintillometer and satellite-based energy balance models in sensible heat flux and crop evapotranspiration determination." International Journal of Remote Sensing Applications, Vol. 2, No. 1, pp. 24-30.
  24. Ndiritu, J.G., and Daniell, T.M. (2001). "An improved genetic algorithm for rainfall-runoff model calibration and function optimization." Mathematical and Computer Modelling, Vol. 33, No. 6-7, pp. 695-706. https://doi.org/10.1016/S0895-7177(00)00273-9
  25. Nelder, J.A., and Mead, R. (1965). "A simplex method for function minimization." The computer journal, Vol. 7, No. 4, pp. 308-313. https://doi.org/10.1093/comjnl/7.4.308
  26. Park, J-C., Jung, I-W., Chang, H-J., and Kim, M-K. (2012). "Optimization of PRISM parameters and digital elevation model resolution for estimating the spatial distribution of precipitation in South Korea." Journal of the Korean Association of Geographic Information Studies, Vol. 15, No. 3, pp. 36-51. https://doi.org/10.11108/kagis.2012.15.3.036
  27. Paul, G., Gowda, P.H., Prasad, P.V., Howell, T.A., and Staggenborg, S.A. (2011). "Evaluating surface energy balance system (SEBS) using aircraft data collected during BEAREX07." World Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability, ASCE, C.A., pp. 2777-2786.
  28. Pronzato, L., Walter, E., Venot, A., and Lebruchec, J.F. (1984). "A general-purpose global optimizer: Implimentation and applications." Mathematics and Computers in Simulation, Vol. 26, No. 5, pp. 412-422. https://doi.org/10.1016/0378-4754(84)90105-8
  29. Rodriguez-Lado, L., Sparovek, G., Vidal-Torrado, P., Dourado-Neto, D., and Macias-Vazquez, F. (2007). "Modelling air temperature for the state of São Paulo, Brazil." Scientia Agricola, Vol. 64, No. 5, pp. 460-467. https://doi.org/10.1590/S0103-90162007000500002
  30. Shin, S.C., Kim, M.K., Suh, M.S., Rha, D.K., Jang, D.H., Kim, C.S., Lee, W.S., and Kim, Y.H. (2008). "Estimation of high resolution gridded precipitation using GIS and PRISM." Atmosphere, Vol. 18, No. 1, pp. 71-81.
  31. Tanakamaru, H. (1996). "Application of global optimization to parameter estimation of the Tank model." Proceedings of the International Conference on Water Resources & Environment Research, ICWRER, Kyoto, Japan, pp. 39-46.
  32. Thornton, P.E., Running, S.W., and White, M.A. (1997). "Generating surfaces of daily meteorological variables over large regions of complex terrain." Journal of hydrology, Vol. 190, No. 3-4, pp. 214-251. https://doi.org/10.1016/S0022-1694(96)03128-9
  33. Um, M., and Jeong, C. (2011). "Spatial analysis of precipitation with PRISM in Gangwondo." Journal of Korea Water Resources Association, Vol. 44, No. 3, pp. 179-188. https://doi.org/10.3741/JKWRA.2011.44.3.179
  34. Vrugt, J.A., Gupta, H.V., Bouten, W., and Sorooshian, S. (2003a). Shuffled complex evolution metropolis (SCEM-UA) algorithm. Manual, version, 1, 24.
  35. Vrugt, J. A., Gupta, H. V., Bouten, W., and Sorooshian, S. (2003). "A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters." Water resources research, Vol. 39, No. 8, pp. 1-16.
  36. Willmott, C.J., and Matsuura, K. (1995). "Smart interpolation of annually averaged air temperature in the United States." Journal of Applied Meteorology, Vol. 34, No. 12, pp. 2577-2586. https://doi.org/10.1175/1520-0450(1995)034<2577:SIOAAA>2.0.CO;2
  37. Wotling, G., Bouvier, C., Danloux, J., and Fritsch, J.M. (2000). "Regionalization of extreme precipitation distribution using the principal components of the topographical environment." Journal of hydrology, Vol. 233, No. 1-4, pp. 86-101. https://doi.org/10.1016/S0022-1694(00)00232-8
  38. Yoon, J.S., Oh, B.H., Cho, J.W., Kim, Y.T., and Hwang, S.H. (2017). "Spatial downscaling of daily rainfall using geographically weighted regression model." Journal of the Korean Society of Hazard Mitigation, Vol. 17, No. 13, pp. 305-318.
  39. Zhu, Q.A., Zhang, W.C., and Zhao, D.Z. (2005). "Topography-based spatial daily precipitation interpolation by means of PRISM and Thiessen polygon analysis." Scientia Geographica Sinica, Vol. 25, No. 2, pp. 233-238. https://doi.org/10.3969/j.issn.1000-0690.2005.02.017