DOI QR코드

DOI QR Code

Adequacy evaluation of the GLDAS and GLEAM evapotranspiration by eddy covariance method

에디공분산 방법에 의한 GLDAS와 GLEAM 증발산량의 적정성 평가

  • Lee, Yeongil (Korea Institute of Hydrological Survey, Research & Development Division) ;
  • Im, Baeseok (DAEYOUNG ENG&C CO., LTD) ;
  • Kim, Kiyoung (Korea Institute of Hydrological Survey, Research & Development Division) ;
  • Rhee, Kyounghoon (Chonnam National University)
  • 이연길 (한국수자원조사기술원 연구개발실) ;
  • 임배석 (대영ENG&C(주)) ;
  • 김기영 (한국수자원조사기술원 연구개발실 SM&ET) ;
  • 이경훈 (전남대학교 공과대학 토목공학과)
  • Received : 2020.07.29
  • Accepted : 2020.09.02
  • Published : 2020.10.31

Abstract

This study was performed in Seolmacheon basin to evaluate the adequacy of GLDAS (Global Land Data Assimilation System) and GLEAM (Global Land Evaporation Amsterdam Model) evapotranspiration data. The verification data necessary for the evaluation of adequacy were calculated after processing the latent heat flux data produced in the Seolmacheon basin with the Koflux program. In order to gap-fill the empty period, alternative evapotranspiration was calculated in three ways: FAO-PM (Food and Agriculture Organization-Penman Monteith), MDV (Mean Diurnal Variation) and Kalman Filter. This study selected Kalman Filter method as the data gap-filling method because it showed the best Bias and RMSE among the three methods. The amount of GLDAS spatial evapotranspiration was calculated as Noah (version 2.1) with a time interval of 3 hours and a spatial resolution of 0.25°. The amount of GLEAM spatial evapotranspiration was calculated using GLEAM (version 3.1a). This study evaluated the spatial evapotranspiration of GLDAS and GLEAM as the evapotranspiration based on eddy covariance. As a result of evaluation, GLDAS spatial evapotranspiration showed better results than GLEAM. Accordingly, in this study, the GLDAS method was proposed as a method for calculating the amount of spatial evapotranspiration in the Seolmacheon basin.

본 연구에서는 GLDAS (Global Land Data Assimilation System)와 GLEAM (Global Land Evaporation Amsterdam Model) 증발산량의 적정성을 평가하기 위해 설마천 유역에서 관측된 에디공분산 기반의 잠열 플럭스를 검증자료로 활용하였다. 잠열 플럭스로부터 증발산량을 산정하기 위해 Koflux 프로그램으로 자료처리하였으며, 자료처리 후 발생된 빈구간을 보충(Gap-filling)하기 위해 FAO-PM (Food and Agriculture Organization-Penman Monteith), 평균 일변동(Mean Diurnal Variation, MDV), 칼만 필터(Kalman Filter)의 3가지 방법으로 대체 증발산량을 산정하였다. 본 연구에서는 3가지 방법 중 칼만 필터(Kalman Filter) 기반의 증발산량이 우수한 Bias와 RMSE를 보여 자료보충 방법으로 채택하였다. 공간증발산량은 GLDAS의 경우 Noah (version 2.1, 3시간, 공간해상도 0.25°)로 추출하였으며 GLEAM의 경우는 GLEAM(version 3.1a, 1일, 공간해상도 0.25°)를 이용하였다. GLDAS와 GLEAM의 공간증발산량을 에디공분산 기반의 증발산량으로 적정성을 평가한 결과, GLDAS의 증발산량이 에디공분산 기반과 비교적 적정한 결과를 나타내었다.

Keywords

References

  1. Allen, R.G., Pereira, L.S., Raes, D., and Smith, M. (1998). "Crop evapotranspiration for computing crop water requirements." FAO irrigation and drainage paper 56 in ROME, Italy.
  2. Cleugh, H.A., Leuning, R., Mu, Q., and Running, S.W. (2007). "Regional evaporation estimaters from flux tower and MODIS satellite data." Remote Sensing of Environment, Vol. 106, pp. 285-304. https://doi.org/10.1016/j.rse.2006.07.007
  3. Falge, E., Baldocchi, D., Olson, R.J., Anthoni, P., Aubinet, M., Bernhofer, C., Burba, G., Ceulemans, R., Clement, R., Dolman, H., Granier, A., Gross, P., Grunwald, T., Hollinger, D., Jensen, N.-O., Katul, G., Keronen, P., Kowalski, A., Ta Lai, C., Law, B.E., Meyers, T., Moncrieff, J., Moors, E., Munger, J.W., Pilegaard, K., Rannik, U., Rebmann, C., Suyker, A., Tenhunen, J., Tu, K., Verma, S., Vesala, T., Wilson, K., and Wofsy, S. (2001). "Gap filling strategies for defensible annual sums of net ecosystem exchange." Agricultural and Forest Meteorology, Vol. 107, pp. 43-69. https://doi.org/10.1016/S0168-1923(00)00225-2
  4. Fang, H., Beaudoing, H.K., Teng, W.L., and Vollmer, B.E. (2009). "Global Land Data Assimilation System (GLDAS) products, services and application from NASA hydrology data and information services center (HDISC)." American Society for Photogrammetry and Remote Sensing, Annual conference, pp. 8-13
  5. Jang, K.C., Kang, S.K., Kim, H.W., and Kwon, H.J. (2009). "Evaluation of shortwave irradiance and evapotranspiration derived from moderate resolution imaging spectroradiometer (MODIS)." Asia-Pacific Journal of Atmospheric Sciences, Vol. 45, pp. 233-246.
  6. Korea Institute of Civil Engineering and Building Technology (KICT) (2013). Hydrological survey for flood forecasting of the mountainous river basin. pp. 7-12.
  7. Lee, Y.G, Lee, J.H., Choi, M.H., and Jung, S.W. (2015). "Evaluation of MODIS-derived evapotranspiration according to the water budget analysis." Journal of Korea Resources Association, Vol 48, pp. 831-843. https://doi.org/10.3741/JKWRA.2015.48.10.831
  8. Martens, B., Miralles, D.G., Lievens, H., Robin, S., Richard, A.M., Beck, H.E., Dorigo, W.A., and Verhoest, E.C. (2017). "GLEAM v3: Satellite-based land evaporation and root-zone soil moisture." Geoscientific Model Development, Vol. 10, pp. 1903-1925. https://doi.org/10.5194/gmd-10-1903-2017
  9. Ministry of Land, Infrastructure, and Transport (MOLT) (2017). Hydrological survey report in 2017 (Part 2: Soil moisture content and evapotranspiration measurement). pp. 27-35.
  10. Ministry of Land, Infrastructure, and Transport (MOLT) (2018). Hydrological survey report in 2018 (Part 2: Soil moisture content and evapotranspiration measurement). pp. 9-36.
  11. Miralles, D.G., Holmes, T.R.H., De Jeu, R.A.M., Gash, J.H., Meesters, A.G.C.A., and Dolman, A.J. (2011). "Global landsurface evaporation estimated from satellite-based observations." Hydrology and Earth System Sciences, Vol. 15, pp. 453-469. https://doi.org/10.5194/hess-15-453-2011
  12. Mu, Q., Lee, J.H., Lee, Y.K., Lee, J.W., Jung, S.W., and Kim, J. (2009). "Seasonal variations of evapotranspiration observed in a mixed forest in the Seolmacheon catchment." Korean Journal of Agricultural and Forest Meteorology, Vol. 11, pp. 39-47. https://doi.org/10.5532/KJAFM.2009.11.1.039
  13. Nishida, K., Nemani, R.R., Glassy, J.M., and Running, S.W. (2003). "Devlopment of an evapotranspiration index Aqua/MODIS for monitoring surface moisture status." IEEE Transaction on Geoscience and Remote Sensing, Vol. 41, No. 2, pp. 493-501. https://doi.org/10.1109/TGRS.2003.811744
  14. Priestley, C.H.B., and Taylor, R.J. (1972). "On the assessment of surface heat flux and evaporation using large scale parameters." Monthly Weather Review, Vol. 100, pp. 81-92. https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
  15. Wilczak, J.M., Oncley, S.P., and Stage, S. (2001). "Sonic anemometer tilt correction algorithms." Boundary Layer Meteorology, Vol. 99, pp. 127-150. https://doi.org/10.1023/A:1018966204465
  16. Yuan, R.M., Kang, S., Park, J., Hong., and Kim, J. (2007). "The effect of coordinate rotation on the eddy covariance flux estimation in a hilly KoFlux forest catchment." Korean Journal of Agricultural and Forest Meteorology, Vol. 9, No. 2, pp. 100-108. https://doi.org/10.5532/KJAFM.2007.9.2.100