DOI QR코드

DOI QR Code

이산요소법 교반 시뮬레이션을 이용한 다자유도 로봇 믹서 성능 평가

Performance Evaluation of Multi-Degree-of-Freedom Robotic Mixer using Discrete Element Mixing Simulations

  • 손권중 (홍익대학교 기계정보공학과)
  • Son, Kwon Joong (Department of Mechanical and Design Engineering, Hongik University)
  • 투고 : 2020.08.26
  • 심사 : 2020.10.20
  • 발행 : 2020.10.28

초록

입상재료를 균일하게 혼합하기 위한 입자 교반기는 다양한 산업 분야에서 널리 활용되는 기계 장치로써 응용 분야와 혼합 조건에 따라 다양한 형태로 개발되어 사용되고 있다. 하지만 대부분 산업용 교반기의 구동 자유도는 2 자유도 이하로써 혼합재료의 기계적 특성 및 교반기의 구조를 제외한 운전 조건 측면에서 최적 교반을 위한 인자의 선택범위는 넓지 않다. 운전 조건의 선택 범위를 확대하기 위해 본 논문에서는 다관절 로봇과 입자용 드럼 믹서를 융합한 다자유도 로봇 교반기를 제안하였고 가상 작동 환경에서 교반 성능을 평가하였다. 입자 유동 해석 기법인 이산요소법을 이용하여 다자유도 로봇 믹서의 성능 예측 시뮬레이션을 수행하였고 제안된 장치 설계안이 기존 교반기보다 개선된 혼합 성능을 발휘할 수 있다는 것을 확인하였다.

Industrial mixers to homogeneously blend particulate materials have been developed and widely used in various industries. However, most industrial mixers have at most two-degree-of-freedom for the operation, which limits the range of operation parameter selection for optimal blending. This paper proposes a multi-degree-of-freedom robotic mixer designed by converging a conventional drum blender and a robotic manipulator and evaluated its performance in a virtual operating environment. Discrete element simulations were conducted for mixing performance evaluation. The numerical results showed that the proposed mixer design exhibits a better mixing performance than conventional ones.

키워드

참고문헌

  1. N. Raval, V. Tambe, R. Maheshwari, P. K. Deb & R. K. Tekade. (2018). Chapter 19 - Scale-Up Studies in Pharmaceutical Products Development. Dosage Form Design Considerations. London : Academic Press. DOI : 10.1016/B978-0-12-814423-7.00019-8
  2. K. J. Son. (2018). A Numerical Study of the Influence of Rheology of Cohesive Particles on Blade Free Planetary Mixing. Korea-Australia Rheology Journal, 30(3), 199-209. DOI : 10.1007/s13367-018-0020-z
  3. K. J. Son. (2019). A Numerical Study of the Influence of Operating Conditions of a Blade Free Planetary Mixer on Blending of Cohesive Powders. Korea-Australia Rheology Journal, 31(1), 15-23. DOI : 10.1007/s13367-019-0002-9
  4. Y. Wen, M. Liu, B. Liu & Y. Shao. (2015). Comparative Study on the Characterization Method of Particle Mixing Index Using DEM Method. Procedia Engineering, 102, 1630-1642. DOI : 10.1016/j.proeng.2015.01.299
  5. H. R. Norouzi, R. Zarghami, R. Sotudeh-Gharebagh & N. Mostoufi. (2016). Coupled CFD-DEM Modeling: Formulation, Implementation and Application to Multiphase Flows. Chichester : John Wiley & Sons. DOI : 10.1002/9781119005315
  6. F. Bertrand, L. -A. Leclaire & G. Levecque. (2005). DEM-Based Models for the Mixing of Granular Materials. Chemical Engineering Science, 60(8-9), 2517-2531. DOI : 10.1016/j.ces.2004.11.048
  7. P. W. Cleary. (2000). DEM Simulation of Industrial Particle Flows: Case Studies of Dragline Excavators, Mixing in Tumblers and Centrifugal Mills. Powder Technology, 109(1-3), 83-104. DOI : 10.1016/S0032-5910(99)00229-6
  8. P. Y. Liu, R. Y. Yang & A. B. Yu. (2013). DEM Study of the Transverse Mixing of Wet Particles in Rotating Drums. Chemical Engineering Science, 86, 99-107. DOI : 10.1016/j.ces.2012.06.015
  9. R. K. Soni, R. Mohanty, S. Mohanty & B. K. Mishra. (2016). Numerical Analysis of Mixing of Particles in Drum Mixers using DEM. Advanced Powder Technology, 27(2), 531-540. DOI : 10.1016/j.apt.2016.01.016
  10. M. S. Escotet-Espinoza, C. J. Foster & M. Ierapetritou. (2018). Discrete Element Modeling (DEM) for Mixing of Cohesive Solids in Rotating Cylinders. Powder Technology, 335, 124-136. DOI : 10.1016/j.powtec.2018.05.024
  11. S. Yang, Y. Sun & J. W. Chew. (2018). Simulation of the Granular Flow of Cylindrical Particles in the Rotating Drum. Particle Technology and Fluidization, 64(11), 3835-3848. DOI : 10.1002/aic.16342
  12. E. Yazdani & S. H. Hashemabadi. (2019). The Influence of Cohesiveness on Particulate Bed Segregation and Mixing in Rotating Drum using DEM. Physica A: Statistical Mechanics and its Applicatoins, 525, 788-797. DOI : 10.1016/j.physa.2019.03.127
  13. H. Ma & Y. Zhao. (2017). Modelling of the Flow of Ellipsoidal Particles in a Horizontal Rotating Drum based on DEM Simulation. Chemical Engineering Science, 172, 636-651. DOI : 10.1016/j.ces.2017.07.017
  14. H. Mio, A. Shimosaka, Y. Shirakawa & J. Hidaka (2005). Optimum Cell Size for Contact Detection in the Algorithm of the Discrete Element Method. Journal of Chemical Engineering of Japan, 38(12), 969-975. DOI : 10.1252/jcej.38.969
  15. K. J. Son. (2018). A Discrete Element Model for the influence of Surfactants on Sedimentation Characteristics of Magnetorheological Fluids. Korea-Australia Rheology Journal, 30(1), 29-39. DOI : 10.1007/s13367-018-0004-z