DOI QR코드

DOI QR Code

Convergence Study on Fabrication and Plasma Module Process Technology of ReRAM Device for Neuromorphic Based

뉴로모픽 기반의 저항 변화 메모리 소자 제작 및 플라즈마 모듈 적용 공정기술에 관한 융합 연구

  • Received : 2020.08.24
  • Accepted : 2020.10.20
  • Published : 2020.10.28

Abstract

The manufacturing process of the resistive variable memory device, which is the based of neuromorphic device, maintained the continuity of vacuum process and applied plasma module suitable for the production of the ReRAM(resistive random access memory) and process technology for the neuromorphic computing, which ensures high integrated and high reliability. The ReRAM device of the oxide thin-film applied to the plasma module was fabricated, and research to improve the properties of the device was conducted through various experiments through changes in materials and process methods. ReRAM device based on TiO2/TiOx of oxide thin-film using plasma module was completed. Crystallinity measured by XRD rutile, HRS:LRS current value is 2.99 × 103 ratio or higher, driving voltage was measured using a semiconductor parameter, and it was confirmed that it can be driven at low voltage of 0.3 V or less. It was possible to fabricate a neuromorphic ReRAM device using oxygen gas in a previously developed plasma module, and TiOx thin-films were deposited to confirm performance.

뉴로모픽 소자 초기 단계인 저항 변화형 메모리 소자의 제작 공정으로, 진공 공정의 연속성을 유지하였고, 고집적, 고신뢰성을 보장하는 뉴로모픽 컴퓨팅을 위한 저항 변화 메모리 소자 제작 및 공정 기술에 적합한 플라즈마 모듈을 적용하였다. 플라즈마 모듈을 적용한 저항메모리(ReRAM) 소자의 제작과 연구는 ReRAM 소자 기반의 TiO2/TiOx 산화물박막의 제작방법과 소재의 변화를 통한 다양한 실험을 통하여 완성되었다. XRD를 이용하여 rutile결정을 측정하였고, 반도체 파라미터 측정기로 저항 메모리의 HRS : LRS 비율이 2.99 × 103 이상이고, 구동 전압 측정이 0.3 V이하에서 구동이 가능한 저항 변화형 메모리 소자의 제작을 확인 하였다. 산소 플라즈마 모듈을 적용한 뉴로모픽 저항메모리 제작과 TiOx 박막을 증착하여 성능을 확인하였다.

Keywords

References

  1. W. W. Zhuanget, et al. (2002). Novel colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM). Digest. International Electron Devices Meeting, 193-196. DOI : 10.1109/IEDM.2002.1175811
  2. M. Terai, Y. Sakotsubo, Y. Saito, S. Kotsuji, & H. Hada. (2010). Memory-State Dependence of Random Telegraph Noise of $Ta_2O_5/TiO_2$ Stack ReRAM. IEEE Electron Device Letters, 31(11), 1302-1304. DOI : 10.1109/led.2010.2068033
  3. S. Tanakamaru, M. Doi, & K. Takeuchi. (2014). NAND Flash Memory/ReRAM Hybrid Unified Solid-State-Storage Architecture. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(4), 1119-1132. DOI : 10.1109/TCSI.2013.2285891
  4. J. Park, et al. (2011). Multibit Operation of TiOx-Based ReRAM by Schottky Barrier Height Engineering. IEEE Electron Device Letters, 32(4), 476-478. DOI : 10.1109/LED.2011.2109032
  5. M. Trapatseli, S. Cortese, A. Serb, A. Khiat, & T. Prodromakis. (2017), Impact of ultra-thin $Al_2O_3$- y layers on $TiO_$-xReRAM switching characteristics. Journal of Applied Physics, 121(18), 184505 DOI : 10.1063/1.4983006
  6. Y. S. Rim, H. S. Lim, & H. J. Kim. (2013). Low-Temperature Metal-Oxide Thin-Film Transistors Formed by Directly Photopatternable and Combustible Solution Synthesis. ACS Applied Materials & Interfaces, 5(9), 3565-3571. DOI : 10.1021/am302722h
  7. M. Katayama, S. Ikesaka, J. Kuwano, Y. Yamamoto, H. Koinuma, & Y. Matsumoto. (2006). Field-effect transistor based on atomically flat rutile TiO2. Applied Physics Letters, 89(24), 242103 DOI : 10.1063/1.2404980
  8. Y. C. Shin, et al. (2008). $(In,Sn)_2O_3/TiO_2$/Pt Schottky-type diode switch for the TiO2 resistive switching memory array. Applied Physics Letters, 92(16), 162904. DOI : 10.1063/1.2912531
  9. D. Y. Kim et al. (2009). Optical Emission Spectra of Oxygen Plasma Produced by Radio-Frequency Plasma. Applied Science and Convergence Technology, 18(2), 102-107. DOI : 10.5757/JKVS.2009.18.2.102
  10. D. V. Ponomarev, G. E. Remnev, R. V. Sazonov, & G. E. Kholodnaya. (2013). Pulse Plasma-Chemical Synthesis of Ultradispersed Powders of Titanium and Silicon Oxide. IEEE Transactions on Plasma Science, 41(10), 2908-2912. DOI : 10.1109/TPS.2013.2273559
  11. S. Park, B. Magyari-Kope, & Y. Nishi, (2011). Impact of Oxygen Vacancy Ordering on the Formation of a Conductive Filament in TiO2 for Resistive Switching Memory. IEEE Electron Device Letters, 32(2), 197-199. DOI : 10.1109/led.2010.2091489
  12. Y. C. Bae, A. R. Lee, J. S. Kwak, H. Im, & J. P. Hong. (2011). Dependence of resistive switching behaviors on oxygen content of the Pt/TiO2-x/Pt matrix. Current Applied Physics, 11(2), e66-e69 DOI : 10.1016/j.cap.2010.11.125
  13. H. Zhang, et al. (2018). Understanding the Coexistence of Two Bipolar Resistive Switching Modes with Opposite Polarity in Pt/TiO2/Ti/Pt Nanosized ReRAM Devices. ACS Applied Materials & Interfaces, 10(35), 29766-29778 DOI : 10.1021/acsami.8b09068
  14. Q. Liu et. al. (2009). Improvement of Resistive Switching Properties in ZrO2-Based ReRAM With Implanted Ti Ions. IEEE Electron Device Letters, 30(12), 1335-1337 DOI : 10.1109/LED.2009.2032566
  15. S. R. Joshi et. al. (2016). Optical studies of cobalt implanted rutile TiO2 (110) surfaces. Applied Surface Science, 387(30), 938-943 DOI : 10.1016/j.apsusc.2016.07.038