DOI QR코드

DOI QR Code

A Key Management Technique Based on Topographic Information Considering IoT Information Errors in Cloud Environment

클라우드 환경에서 IoT 정보 오류를 고려한 지형 정보 기반의 키 관리 기법

  • Jeong, Yoon-Su (Dept. of Information Communication & Engineering, Mokwon University) ;
  • Choi, Jeong-hee (Division of Software Liberal Arts, Stokes College, Mokwon University)
  • 정윤수 (목원대학교 정보통신융합공학부) ;
  • 최정희 (목원대학교 스톡스대학 SW교양학부)
  • Received : 2020.08.13
  • Accepted : 2020.10.20
  • Published : 2020.10.28

Abstract

In the cloud environment, IoT devices using sensors and wearable devices are being applied in various environments, and technologies that accurately determine the information generated by IoT devices are being actively studied. However, due to limitations in the IoT environment such as power and security, information generated by IoT devices is very weak, so financial damage and human casualties are increasing. To accurately collect and analyze IoT information, this paper proposes a topographic information-based key management technique that considers IoT information errors. The proposed technique allows IoT layout errors and groups topographic information into groups of dogs in order to secure connectivity of IoT devices in the event of arbitrary deployment of IoT devices in the cloud environment. In particular, each grouped terrain information is assigned random selected keys from the entire key pool, and the key of the terrain information contained in the IoT information and the probability-high key values are secured with the connectivity of the IoT device. In particular, the proposed technique can reduce information errors about IoT devices because the key of IoT terrain information is extracted by seed using probabilistic deep learning.

클라우드 환경에서는 센서 및 웨어러블 장치를 이용한 IoT 기기가 다양한 환경에서 응용되고 있으며 그에 따른 IoT 기기에서 생성되는 정보를 정확하게 판별하는 기술들이 활발하게 연구되고 있다. 그러나, 전력 및 보안과 같은 IoT 환경의 제약사항으로 인하여 IoT 장치에서 발생하는 정보가 매우 취약하기 때문에 금전 피해 및 인명 피해가 증가하고 있다. 본 논문에서는 IoT 정보를 정확하게 수집·분석하기 위해서 IoT 정보 오류를 고려한 지형 정보 기반의 키 관리기법을 제안한다. 제안 기법은 IoT 장치를 클라우드 환경에서 임의로 배치할 경우 IoT 장치의 연결성을 확보하기 위해서 IoT 배치 오류를 허용하는 동시에 지형 정보를 n개의 그룹으로 그룹핑 하도록 한다. 특히, 각 그룹핑 된 지형 정보에는 전체 키 풀에서 랜덤하게 선택된 임의의 키를 할당한 후 IoT 정보에 포함된 지형 정보의 키와 확률적으로 높은 키 값을 IoT 장치의 연결성으로 확보할 수 있도록 한다. 특히, 제안 기법은 확률적 딥러닝을 이용하여 IoT 지형 정보의 키를 시드로 추출하기 때문에 IoT 장치에 대한 정보 오류를 낮출수 있다.

Keywords

References

  1. L. Cheng, S. Kotoulas, T. E. Ward & G. Theodoropoulos. (2017). Improving the robustness and performance of parallel joins over distributed systems, Journal of Parallel and Distributed Computing, 109, 310-323. https://doi.org/10.1016/j.jpdc.2017.06.016
  2. M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker & I. Stoica. (2010). Spark: cluster computing with working sets, Proceedings of the 2nd USENIX conference on Hot topics in cloud computing(HotCloud'10), 10-10.
  3. W. R. Heinzelman, A. Chandrakasan & H. Balakrishnan. (2000). Energyefficient communication protocol for wireless microsensor networks, Proceedings of the 33rd annual Hawaii international conference on System sciences, IEEE, 10.
  4. G. Chen, C. Li, M. Ye & J. Wu. (2009). An unequal cluster-based routing protocol in wireless sensor networks, Wireless Networks, 15(2), 193-207. https://doi.org/10.1007/s11276-007-0035-8
  5. H. Mao, M. Alizadeh, I. Menache & S. Kandula. (2016). Resource management with deep reinforcement learning, Proceedings of the 15th ACM Workshop on Hot Topics in Networks. ACM, 50-56.
  6. C. Y. Chen & H. C. Chao. (2014). A survey of key distribution in wireless sensor networks, Security and Communication Networks, 7, 2495-2508. https://doi.org/10.1002/sec.354
  7. M. A. Simplicio Jr., P. S.L.M. Barreto., C. B. Margi, & T. C.M.B. Carvalho (2010). A survey on key management mechanisms for distributed wireless Sensor networks, Computer Networks, 54, 2591-2612. https://doi.org/10.1016/j.comnet.2010.04.010
  8. S. Zhu, S. Setia & S. Jajodia. (2003). LEAP: efficient security mechanisms for large-scale distributed sensor networks, In Proc. of ACM CCS.
  9. B. Cao, J. Zhao, Z. Lv, X. Liu, X. Kang & S. Yang. (2018). Deployment optimization for 3D industrial wireless sensor networks based on particle swarm optimizers with distributed parallelism, Journal of Network and Computer Applications, 103, 225-238, https://doi.org/10.1016/j.jnca.2017.08.009
  10. H. Chan, A. Perrig & D. Song. (2003). Random key predistribution schemes for sensor networks, In Proc. of IEEE S&P.
  11. L. Eschenauer & V. Gligor. (2002). A key-management scheme for distributed sensor networks, In Proc. of ACM CCS.
  12. T. Kwon, J. Lee & J. Song. (2009). Location-based pairwise key predistribution for wireless sensor networks, IEEE Trans. on Wireless Communications, 8(11).
  13. M. Farsi, M. A. Elhosseini, M. Badawy, H. A. Ali & H. Z. Eldin. (2019). Deployment techniques in wireless sensor networks, coverage and connectivity: a survey, IEEE Access, 7.
  14. J. W. Choi, J. H. Bang, L. H. Kim, M. R. Ahn and T. Y. Kwon, "Location-Based Key Management Strong Against Insider Threats in Wireless Sensor Networks," IEEE Systems Journal, Vol. 11, Issue 2, 2017
  15. C. G. Ma, G. Geng, H. Q. Wang and G. Yang. (2009). Location-Aware and Secret Share Based Dynamic Key Management Scheme for Wireless Sensor Networks, Proceedings of the 2009 International Conference on Networks Security, Wireless Communications and Trusted Computing, 1.