DOI QR코드

DOI QR Code

Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: a review

  • Received : 2019.07.17
  • Accepted : 2020.01.19
  • Published : 2020.06.30

Abstract

In the forest ecosystems, litterfall is an important component of the nutrient cycle that regulates the accumulation of soil organic matter (SOM), the input and output of the nutrients, nutrient replenishment, biodiversity conservation, and other ecosystem functions. Therefore, a profound understanding of the major processes (litterfall production and its decomposition rate) in the cycle is vital for sustainable forest management (SFM). Despite these facts, there is still a limited knowledge in tropical forest ecosystems, and further researches are highly needed. This shortfall of research-based knowledge, especially in tropical forest ecosystems, may be a contributing factor to the lack of understanding of the role of plant litter in the forest ecosystem function for sustainable forest management, particularly in the tropical forest landscapes. Therefore, in this paper, I review the role of plant litter in tropical forest ecosystems with the aims of assessing the importance of plant litter in forest ecosystems for the biogeochemical cycle. Then, the major factors that affect the plant litter production and decomposition were identified, which could direct and contribute to future research. The small set of studies reviewed in this paper demonstrated the potential of plant litter to improve the biogeochemical cycle and nutrients in the forest ecosystems. However, further researches are needed particularly on the effect of species, forest structures, seasons, and climate factors on the plant litter production and decomposition in various types of forest ecosystems.

Keywords

References

  1. Akpor OB, Okoh AI, Babalola GO. Culturable microbial population during decomposition of Cola nitida leaf litters in a tropical soil setting. 2006;18(3):313-9.
  2. Aravena JC, Carmona MR, Perez CA, Armesto JJ. Changes in tree species richness stand structure and soil properties in a successional chronosequence in northern Chile Island. Chile RevChil Hist Nat. 2002;75:339-60.
  3. Andren O, Paustian K. Barely straw decomposition in the field: A comparison of models. Ecology. 1987;68:1190-200. https://doi.org/10.2307/1939203
  4. Argao LEOC, Malhi Y, Metcalfe DB, Silva-Espejo JE, Jimenez E, Navarrete D, Asquez R. Above- and below-ground net primary productivity across net primary productivity across ten Amazonian forests on contrasting soils. Biogeosci. 2009;6:2759-778. https://doi.org/10.5194/bg-6-2759-2009
  5. Becker H, Pabst J, Mnyonga J, Kuzyakov Y. Annual litterfall dynamics and nutrient deposition depending on elevation and land use at Mt. Kilimanjaro. Biogeosci Discuss. 2015;2:10031-57.
  6. Berg B, Laskowski R. Litter decomposition: A guide to carbon and nutrient turnover. Adv Ecol Res. 2006;38:448.
  7. Brady NC, Weil RR. The nature and properties of soils. Pearson prentice hall, upper saddle river. NY. 2010.
  8. Bray JR, Gorham E. Litter production in forests of the world. Adv Ecol Res. 1964;2:101-57. https://doi.org/10.1016/S0065-2504(08)60331-1
  9. Brown GG. How do earthworms affect microfloral and faunal community diversity? Plant Soil. 1995;170:209-31. https://doi.org/10.1007/BF02183068
  10. Cadish G, Giller KE. Driven by nature: plant litter quality and decomposition. Wallingford: CAB International; 1997.
  11. Chapman SK, Koch GW. What type of diversity yields synergy during mixed litter decomposition in a natural forest ecosystem? Plant Soil. 2007;299:153-62. https://doi.org/10.1007/s11104-007-9372-8
  12. Chaubey OP, Prasad R, Mishra GP. Litter production and nutrient return in teak plantations and adjoining natural forests in Madhya Pradesh. Jour Trop For. 1988;4:242-55.
  13. Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR. Measuring net production in forests: concepts and field methods. Ecol Appl. 2001;11:356-70. https://doi.org/10.1890/1051-0761(2001)011[0356:MNPPIF]2.0.CO;2
  14. Coleman DC. and Crossley DA.Fundamental of Soil Ecology. Newyork: Academic Press Inc. 1996;205.
  15. Cornwell WK, Cornlissen JHC, Amatangelo K, Dorrrepaal E, Eviner VT, Godoy O, et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett. 2008;11:1065-71. https://doi.org/10.1111/j.1461-0248.2008.01219.x
  16. Crawford DL. Biodegradation of agricultural and rural wastes. In: Goodfellow M, Williams ST, Mordaski M, editors. Actinomycetes in biotechnology. London:Academic; 1988. p. 433-9.
  17. Cuevas E, Lugo AE. Dynamics of organic matter and nutrient return from litterfall in stands of ten tropical tree plantation species. For Ecol Manage. 1998;112:263-79. https://doi.org/10.1016/S0378-1127(98)00410-1
  18. Cuevas E, Medina E. Nutrient dynamics within Amazonian forests: part 1, nutrient flux in fine litter fall and efficiency of nutrient utilization. Oecologia. 1986;68:466-72. https://doi.org/10.1007/BF01036756
  19. De Weirdt M, Verbeeck H, Maignan F, Peylin P, Poluter B, Bonal D, Cias P, Steppe K. Seasonal leaf dynamics for tropical evergreen forests in a process-based global ecosystem model. Geosci Model Dev. 2012;5:1091-108. https://doi.org/10.5194/gmd-5-1091-2012
  20. Devis AS, Yadava PS. Wood and leaf litter decomposition of Dipterocarpus tuberculatus Roxb. in a tropical deciduous forest of Manipur, North East India. Curr Sci. 2007;93:243-6.
  21. Dilly O, Bloem J, Vos A, Munch JC. Bacterial diversity in agricultural soils during litter decomposition. Appl Environ Microbiol. 2004;70:468-74. https://doi.org/10.1128/AEM.70.1.468-474.2004
  22. Franklin J, Spies TA, Pelt RV, Carey AB, Thornburgh DA, Berg DR, et al. Disturbance and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. For Ecol Manage. 2002;155:399-423. https://doi.org/10.1016/S0378-1127(01)00575-8
  23. Gartner TB, Cardon ZG. Decomposition dynamics in mixed-species leaf litter a review. Oikos. 2004;104:230. https://doi.org/10.1111/j.0030-1299.2004.12738.x
  24. Gartner TB, Cardon ZG. Site of leaf origin affects how mixed litter decomposes. Soil Biol Biochem. 2006;38(8):2307-17. https://doi.org/10.1016/j.soilbio.2006.02.014
  25. Giebelmann UC, Martins KG, Brandle M, Schadler M, Marques R, Brandl R. Lack of home-field advantage in the decomposition of leaf litter in the Atlantic rainforest of Brazil. Appl Soil Ecol. 2013;8:1. https://doi.org/10.1016/S0929-1393(98)00030-4
  26. Gillon D, Joffre R, Ibrahim A. Initial litter properties and decay rate: a microcosm experiment on Mediterranean species. Can J Bot. 1993;72:946-54. https://doi.org/10.1139/b94-120
  27. Gonzalez G, Ley RE, Schmidt SK, Zou X, Seastedt TR. Soil ecological interactions: comparison between tropical and subalpine forests. Oceologia. 2001;128:549-56. https://doi.org/10.1007/s004420100685
  28. Gonzalez G, Zou X. Earthworm influence on N availability and the growth of Cecropla scheberiana in tropical pasture and forest soils. Pedobiologia. 1999;43:824-9.
  29. Gonzalez ME, Veblen TT, Siblod JS. Fire history of Arucaria-Nothofagus forests in Villarrica National Park, Chile. J Biogeogr. 2005;32:1187-202. https://doi.org/10.1111/j.1365-2699.2005.01262.x
  30. Hattenschwiler S, Jorgensen HB. Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. J Ecol. 2010;98:754. https://doi.org/10.1111/j.1365-2745.2010.01671.x
  31. Hayes GF, Holl KD. Cattle grazing impacts on annual forbs and vegetation composition of mesic grasslands in California. Conserv Biol. 2003;17:1694-702. https://doi.org/10.1111/j.1523-1739.2003.00281.x
  32. Joffre R, Agren GJ, Gillon D, Bosatta E. Organic matter quality in ecological studies: theory meets experiment. Oikos. 2001;93:451-8. https://doi.org/10.1034/j.1600-0706.2001.930310.x
  33. Krishna MP, Mohan M. Litter decomposition in forest ecosystems: a review. Energ Ecol Environ. 2007;2(4):236-49. https://doi.org/10.1007/s40974-017-0064-9
  34. Kumar M, Joshi M, Todaria NP. Regeneration status of a sub-tropical Anogeissus latifolia forest in Garhwal Himalaya, India. J For Res. 2010;21(4):439-44. https://doi.org/10.1007/s11676-010-0094-z
  35. Laganiere J, Pare D, Bradley RL. How does a tree species influence litter decomposition. Separating the relative contribution of litter quality, litter mixing, and forest door conditions. Can J For Res. 2010;40:465. https://doi.org/10.1139/X09-208
  36. Lavelle P, Bignell D, Lepage M, Wolters V, Rogers P, Ineson P, Healow, Dhillion S. Soil functions in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Biol. 1997;33:159-93.
  37. Lira J, Sepp T, Parrest O. The forest structure and ecosystem quality in conditions of anthropogenic disturbance along productivity gradient. For Ecol Manage. 2007;250:34-46. https://doi.org/10.1016/j.foreco.2007.03.007
  38. Liu L. Patterns of litterfall and nutrient return at different altitudes in evergreen hardwood forests of Central Taiwan. Ann. For. Sci. 2012;69(8):877-86. https://doi.org/10.1007/s13595-012-0213-4
  39. Magid J, Cadisc G, Giller KE. Short and medium term plant litter decomposition in a tropical Ultisol elucidated by physical fraction in a dual $^{13}C$ and $^{14}C$ isotope study. Soil Biol Biochem. 2002;34:127301281.
  40. McCarthy AJ. Lignocellulose-degrading actinomycetes. Federation of Microbiological Societies (FEMS). Microbiol Rev. 1987;46:145-63.
  41. Mctiernan KB, Ineson P, Coward PA. Respiration and nutrient release from tree leaf mixtures. Oikos. 1997;78:754.
  42. Meentemeyer V. Macroclimate and lignin control of litter decomposition rates. Ecology. 1978;59:465-72. https://doi.org/10.2307/1936576
  43. Melo MA, Budke JC, Henke-Oliveira C. Relationships between structure of the tree component and environment variables in a subtropical seasonal forest in the upper Uragay River Valley, Brazil. Acta Bot Bras. 2013;27:751-60. https://doi.org/10.1590/S0102-33062013000400015
  44. Mishra BP, Tripathi OP, Tripathi RS, Pandey HN. Effects of anthropogenic disturbance on plant diversity and community structure of a sacred grove in Meghalaya, north east India. Biodivers Conserv. 2004;13:421-36. https://doi.org/10.1023/B:BIOC.0000006509.31571.a0
  45. Olson JS. Energy storage and the balance of production and decomposition in ecological systems. Ecology. 1963;44:323-31. https://doi.org/10.2307/1932179
  46. Pant SC, Tiwari SC. Litter fall and litter decomposition in a montane oak forest of Garhwal Himalaya. Trop Ecol. 1992;33(1):103-9.
  47. Parsons SA, Valdez-Ramirez V, Congdon RA, Williams SE. Contrasting patterns of litterfall seasonality and seasonal changes in litter decomposability in a tropical rainforest region. Biogeosciences. 2014;11:5047-56. https://doi.org/10.5194/bg-11-5047-2014
  48. Perez-Harguindeguy N, Diaz S, Cornelissen JHC, Venramini F, Cabido M, Castellanos A. Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in Central Argentina. Plant Soil. 2000;218:21-30. https://doi.org/10.1023/A:1014981715532
  49. Perez-Suarez M, Arredondo-moreno T, Huber-Sannwald E. Early stage of single and mixed leaf-litter decomposition in semiarid forest pine-oak: the role of rainfall and microsite. Biogeochemistry. 2012;108:245. https://doi.org/10.1007/s10533-011-9594-y
  50. Perez-Suarez M, Arredondo-Moreno JT, Huber-Sannwald E, Vargas-Hernandez, JJ. Production and quality of senesced and green litterfall in a pineoak forest in central-northwest Mexico. For Ecol Manage. 2009;258:1307-315. https://doi.org/10.1016/j.foreco.2009.06.031.
  51. Prescott CE. Do rates of litter decomposition tell us anything we really need to know? For Ecol Manage. 2005;220:66. https://doi.org/10.1016/j.foreco.2005.08.005
  52. Qiulu XZ, Xie SC, Liu WY. Studies on the forest ecosystem in Allao Mountains, Yunnan, China. Kumming: Science and Technology Press; 1998.
  53. Rawat N, Nautiyal MC. Litter production pattern and nutrients discharge from decomposing litter in Himalayan alpine ecosystem. New York Sci J. 2009;2(6):ISSN 1554-0200.2009.
  54. Ruiz-Benito P, Gomez-Aparicio L, Paquette A, et al. Diversity increases carbon storage and tree productivity in Spain forest. Glob Ecol Biogeogr. 2014;23:311-22. https://doi.org/10.1111/geb.12126
  55. Sariyildiz T. Effects of gap-size classes on long-term litter decomposition rates of beech, oak and chestnut species at high elevations in Northeast Turkey. Ecosystems. 2008;11:841. https://doi.org/10.1007/s10021-008-9164-x
  56. Schaefer M and Schauermann J. The soil fauna of beech forests: Comparison between a mull and a modern soil. Pedobiologia. 1990;34(5):299-314.
  57. Scheer MB. Nutrient flow in rainfall and throughfall in two stretches in an Atlantic Rain Forest in southern Brazil (in Portuguese). Floresta. 2009;39:117-30. https://doi.org/10.5380/rf.v39i1.13732
  58. Schinner F. Introduction. In: Schinner F, Ohlinger R, Kandeler E, Margesin R, editors. Methods in soil biology. Berlin: Springer-Verlag; 1996. p. 3-6.
  59. Seta T, Zerihun W. Litterfall dynamics in Boter-Becho forest: moist evergreen montane forests of southwestern Ethiopia. J Ecol Nat Environ. 2018;10(1):13-21. https://doi.org/10.5897/JENE2017.0648
  60. Sundarapandian SM, Swamy PS. Litter production and leaf litter decomposition of selected tree species in tropical forests at Kodayar in the Western Ghats, India. For Ecol Manage. 1999;123:231-44. https://doi.org/10.1016/S0378-1127(99)00062-6
  61. Swift MJ, Heal OW, Anderson JM. Decomposition in terrestrial ecosystems. Oxford: Blackwell Scientific Publications; 1979.
  62. Szanser M, Ilieva-Makulec K, Kajak A, et al. Impact of litter species diversity on decomposition processes and communities of soil organisms. Soil Biol Biochem. 2001;43:9-19. https://doi.org/10.1016/j.soilbio.2010.08.031
  63. Taylor BR, Parkinson D, Parsons WFJ. Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology. 1989;70:97. https://doi.org/10.2307/1938416
  64. Tripathi OP, Pandey HN, Tripathi RS. Litter production, decomposition and physicchemical properties of soil in 3 developed agroforestry systems of Meghalaya, Northeast India. Afr J Plant Sci. 2009;3(8):160-7.
  65. Veen GF, Sundqvist MA, Wardle DA. Environmental factors and traits that drive plant litter decomposition do not determine home-field advantage effects. Funct Ecol. 2015;29:981-91. https://doi.org/10.1111/1365-2435.12421
  66. Vitousek P. Nutrient cycling and nutrient use efficiency. Am Nat. 1982;119:553-72. https://doi.org/10.1086/283931
  67. Vitousek P, Sanford RL. Nutrient cycling in tropical forest. Annu Rev Ecol Syst. 1986;17:137-67. https://doi.org/10.1146/annurev.es.17.110186.001033
  68. Vivanco L, Austin AT. Tree species identity alters forest litter decomposition through long-term plant and soil interaction in Patagonia, Argentina. J Ecol. 2008;96:727-36. https://doi.org/10.1111/j.1365-2745.2008.01393.x
  69. Wedin DA, Tieszen LL, Deway B, Pastor J. Carbon isotope dynamics during grass decomposition and soil organic matter formation. Ecology. 1995;76:1383-92. https://doi.org/10.2307/1938142
  70. Wiebe KL. Responses of cavity-nesting birds to fire: testing a general model with data from the northern flicker. Ecology. 2014;95:2537-47. https://doi.org/10.1890/13-1711.1
  71. Zhang H, Yuan W, Liu S. Seasonal patterns of litterfall in forest ecosystem worldwide. Ecol Complexity. 2014;20:240-7. https://doi.org/10.1016/j.ecocom.2014.01.003

Cited by

  1. Nutrient Contribution of Litterfall in a Short Rotation Plantation of Pure or Mixed Plots of Populus alba L. and Robinia pseudoacacia L. vol.11, pp.11, 2020, https://doi.org/10.3390/f11111133
  2. Carbon cycle in tropical upland ecosystems: a global review vol.21, pp.2, 2020, https://doi.org/10.5194/we-21-109-2021
  3. Assessing wetland functionality using soil surface indicators in Letšeng- la-Letsie wetland in Quthing District, Lesotho vol.38, pp.1, 2021, https://doi.org/10.2989/10220119.2020.1854345
  4. Carbon production from seasonal litterfall in the Brazilian Atlantic Forest vol.83, pp.2, 2020, https://doi.org/10.2989/20702620.2021.1886575
  5. Warming of aquatic ecosystems disrupts aquatic–terrestrial linkages in the tropics vol.90, pp.7, 2020, https://doi.org/10.1111/1365-2656.13505
  6. Genomic and Experimental Investigations of Auriscalpium and Strobilurus Fungi Reveal New Insights into Pinecone Decomposition vol.7, pp.8, 2020, https://doi.org/10.3390/jof7080679
  7. Vegetation Type and Soil Moisture Drive Variations in Leaf Litter Decomposition Following Secondary Forest Succession vol.12, pp.9, 2021, https://doi.org/10.3390/f12091195