DOI QR코드

DOI QR Code

Veterinary antibiotic oxytetracycline's effect on the soil microbial community

  • Received : 2019.08.09
  • Accepted : 2020.03.25
  • Published : 2020.06.30

Abstract

Background: Antibiotics are widely used to treat animals from infections. After fertilizing, antibacterials can remain in the soil while adversely affecting the soil microorganisms. The concentration of oxytetracycline (OTC) in the soil and its effect on the soil microbial community was assessed. To assess the impact of OTC on the soil microbial community, it was added to the soil at concentrations of 50, 150, and 300 mg kg-1 and incubated for 35 days. Results: The concentration of OTC added to the soil decreased from 150 to 7.6 mg kg-1 during 30 days of incubation, as revealed by LC-MS. The deviations from the control values in the level of substrate-induced respiration on the 5th day of the experiment were, on average, 26, 68, and 90%, with OTC concentrations at 50, 150, and 300 mg kg-1, respectively. In samples with 150 and 300 mg kg-1 of OTC, the number of bacteria from the 3rd to 14th day was 2-3 orders of magnitude lower than in the control. The addition of OTC did not affect the fungal counts in samples except on the 7th and 14th days for the 150 and 300 mg kg-1 contaminated samples. Genes tet(M) and tet(X) were found in samples containing 50, 150, and 300 mg kg-1 OTC, with no significant differences in the number of copies of tet(M) and tet(X) genes from the OTC concentration. Conclusions: Our results showed that even after a decrease in antibiotic availability, its influence on the soil microbial community remains.

Keywords

References

  1. Alonso A, Sanchez P, Martinez JL. Environmental selection of antibiotic resistance genes. Environ Microbiol. 2001;3(1):1-9. https://doi.org/10.1046/j.1462-2920.2001.00161.x
  2. Aydin S, Ince B, Ince O. Development of antibiotic resistance genes in microbial communities during long-term operation of anaerobic reactors in the treatment of pharmaceutical wastewater. Water Res Elsevier Ltd. 2015;83:337-44. https://doi.org/10.1016/j.watres.2015.07.007
  3. Blagodatskaya E, Kuzyakov Y. Active microorganisms in soil: Critical review of estimation criteria and approaches. Soil Biol Biochem. 2013;67:192-211. https://doi.org/10.1016/j.soilbio.2013.08.024
  4. Chen GX, He WW, Wang Y, De Zou Y, Liang JB, Di Liao X. Effect of different oxytetracycline addition methods on its degradation behavior in soil. Sci Total Environ. 2014;479-480(1):241-6. https://doi.org/10.1016/j.scitotenv.2014.01.124
  5. Chen W, Liu W, Pan N, Jiao W, Wang M. Oxytetracycline on functions and structure of soil microbial community. J Soil Sci Plant Nutr. 2013;13(4):967-75.
  6. Cheng W, Li J, Wu Y, Xu L, Su C, Qian Y. Behavior of antibiotics and antibiotic resistance genes in eco-agricultural system: A case study. J Hazard Mater. 2016;304:18-25. https://doi.org/10.1016/j.jhazmat.2015.10.037
  7. Chopra I, Roberts M. Tetracycline antibiotics : mode of action , applications , molecular biology , and epidemiology of bacterial resistance. Microbiol Mol Biol Rev. 2001;65(2):232-60. https://doi.org/10.1128/MMBR.65.2.232-260.2001
  8. Du L, Liu W. Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems. A review. Agron Sustain Dev. 2012;32(2):309-27. https://doi.org/10.1007/s13593-011-0062-9
  9. Duan M, Li H, Gu J, Tuo X, Sun W, Qian X. Effects of biochar on reducing the abundance of oxytetracycline, antibiotic resistance genes, and human pathogenic bacteria in soil and lettuce. Environ Pollut. 2017;224:787-95. https://doi.org/10.1016/j.envpol.2017.01.021
  10. Grenni P, Ancona V, Barra CA. Ecological effects of antibiotics on natural ecosystems: a review. Microchem J. 2018;136:25-39. https://doi.org/10.1016/j.microc.2017.02.006
  11. Halling-Sorensen B, Nielsen S, Lanzky PF, Ingerslev F, Holten Lutzhoft HC, Jorgensen SE. Occurence, fate and effects of pharmaceuticals substance in the environment - A review. Chemosphere. 1998;36(2):357-93. https://doi.org/10.1016/S0045-6535(97)00354-8
  12. Heuer H, Schmitt H, Smalla K. Antibiotic resistance gene spread due to manure application on agricultural fields. Curr Opin Microbiol. 2011;14(3):236-43. https://doi.org/10.1016/j.mib.2011.04.009
  13. Hund-Rinke K, Simon M, Lukow T. Effects of tetracycline on the soil microflora: Function, diversity, resistance. J Soils Sediments. 2004;4(1):11-6. https://doi.org/10.1007/BF02990823
  14. Jechalke S, Heuer H, Siemens J, Amelung W, Smalla K. Fate and effects of veterinary antibiotics in soil. Trends Microbiol. 2014;22(9):536-45. https://doi.org/10.1016/j.tim.2014.05.005
  15. Kay P, Blackwell PA, Boxall ABA. Fate of veterinary antibiotics in a macroporous tile drained clay soil. Environ Toxicol Chem. 2004;23:1136-44. https://doi.org/10.1897/03-374
  16. Li B, Zhang T, Xu Z, Fang HHP. Rapid analysis of 21 antibiotics of multiple classes in municipal wastewater using ultra performance liquid chromatographytandem mass spectrometry. Anal Chim Acta. 2009;645(1-2):64-72. https://doi.org/10.1016/j.aca.2009.04.042
  17. Liu B, Li Y, Zhang X, Wang J, Gao M. Effects of chlortetracycline on soil microbial communities: Comparisons of enzyme activities to the functional diversity via Biolog EcoPlatesTM. Eur J Soil Biol. 2015;68:69-76. https://doi.org/10.1016/j.ejsobi.2015.01.002
  18. Ma T, Pan X, Chen L, Liu W, Christie P, Luo Y. Effects of different concentrations and application frequencies of oxytetracycline on soil enzyme activities and microbial community diversity. Eur J Soil Biol. 2016;76:53-60. https://doi.org/10.1016/j.ejsobi.2016.07.004
  19. Martinez JL. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut. 2009;157(11):2893-902. https://doi.org/10.1016/j.envpol.2009.05.051
  20. Mojica E, Aga DS. Antibiotics pollution in soil and water : potential ecological and human health issues. Encycl Environ Heal. 2011:97-110.
  21. Molaei A, Lakzian A, Haghnia G, Astaraei A, Rasouli-Sadaghiani MH, Ceccherini MT. Assessment of some cultural experimental methods to study the effects of antibiotics on microbial activities in a soil: An incubation study. PLoS One. 2017;12(7):1-14.
  22. Munita JM, Arias C. Mechanisms of antibiotic resistance. HHS Public Access. 2016;4(2):1-37.
  23. Qingxiang Y, Jing Z, Kongfang Z, Hao Z. Influence of oxytetracycline on the structure and activity of microbial community in wheat rhizosphere soil. J Environ Sci. 2009;21(7):954-9. https://doi.org/10.1016/S1001-0742(08)62367-0
  24. Ramaswamy J, Prasher SO, Patel RM, Hussain SA, Barrington SF. The effect of composting on the degradation of a veterinary pharmaceutical. Bioresour Technol. 2010;101(7):2294-9. https://doi.org/10.1016/j.biortech.2009.10.089
  25. Roberts M. Update on acquired tetracycline resistance genes. FEMS Microbiol Lett. 2005;245(2):195-203. https://doi.org/10.1016/j.femsle.2005.02.034
  26. Sarmah AK, Meyer MT, Boxall AB. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere. 2006;65(5):725-59. https://doi.org/10.1016/j.chemosphere.2006.03.026
  27. Sharma VK, Johnson N, Cizmas L, Mcdonald TJ, Kim H. A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes. Chemosphere. 2016;150:702-14. https://doi.org/10.1016/j.chemosphere.2015.12.084
  28. Speer B, Shoemaker NB, Salyers AA. Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance. Clin Microbiol Rev. 1992;5(4):387-99. https://doi.org/10.1128/CMR.5.4.387
  29. Suzuki S, Ogo M, Koike T, Takada H, Newman B. Sulfonamide and tetracycline resistance genes in total- and culturable-bacterial assemblages in south african aquatic environments. Front Microbiol. 2015;6:1-8. https://doi.org/10.3389/fmicb.2015.00001
  30. Thiele-Bruhn S. Pharmaceutical antibiotic compounds in soils - A review. J Plant Nutr Soil Sci. 2003;166(2):145-67. https://doi.org/10.1002/jpln.200390023
  31. Thiele-Bruhn S, Beck IC. Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. Chemosphere. 2005;59(4):457-65. https://doi.org/10.1016/j.chemosphere.2005.01.023
  32. Tien Y, Li B, Zhang T, Scott A, Murray R, Sabourin L. Impact of dairy manure preapplication treatment on manure composition , soil dynamics of antibiotic resistance genes , and abundance of antibiotic-resistance genes on vegetables at harvest. Sci Total Environ. 2017;581-582:32-9. https://doi.org/10.1016/j.scitotenv.2016.12.138
  33. Wang F, Qiao M, Chen Z, Su J, Zhu Y. Antibiotic resistance genes in manureamended soil and vegetables at harvest. J Hazard Mater. 2015;299(3):215-21. https://doi.org/10.1016/j.jhazmat.2015.05.028
  34. Wang Q, Yates S. Laboratory Study of oxytetracycline degradation kinetics in animal manure and soil. J Agric Food Chem. 2008;56:1683-8. https://doi.org/10.1021/jf072927p
  35. Xie W-Y, Shen Q, Zhao FJ. Antibiotics and antibiotic resistance from animal manures to soil: a review. Eur J Soil Sci. 2017;69(1):1-15. https://doi.org/10.1111/ejss.12523
  36. Xie WY, Yang XP, Li Q, Wu LH, Shen QR, Zhao FJ. Changes in antibiotic concentrations and antibiotic resistome during commercial composting of animal manures. Environ Pollut. 2016;219:182-90. https://doi.org/10.1016/j.envpol.2016.10.044
  37. Zhang T, Zhang M, Zhang X, Fang HH. Tetracycline resistance genes and tetracycline resistant lactose-fermenting enterobacteriaceae in activated sludge of sewage treatment plants. Environ Sci Technol. 2009;43:3455-60. https://doi.org/10.1021/es803309m
  38. Zhang W, Huang M, Qi F, Sun P, Van Ginkel SW. Effect of trace tetracycline concentrations on the structure of a microbial community and the development of tetracycline resistance genes in sequencing batch reactors. Bioresour Technol. 2013;150:9-14. https://doi.org/10.1016/j.biortech.2013.09.081
  39. Zhang YJ, Hu H, Chen Q, Singh B, Yan H, Chen D, He J. Transfer of antibiotic resistance from manure-amended soils to vegetable microbiomes. Environ Int Elsevier. 2019;130:1-10.
  40. Cao J, Wang C, Dou Z, Ji D. Independent and combined effects of oxytetracycline and antibiotic-resistant Escherichia coli O157: H7 on soil microbial activity and partial nitrification processes. Soil Biol Biochem. 2016;98:138-47. https://doi.org/10.1016/j.soilbio.2016.03.014

Cited by

  1. Effect of Oxytetracycline and Chlortetracycline on Bacterial Community Growth in Agricultural Soils vol.10, pp.7, 2020, https://doi.org/10.3390/agronomy10071011
  2. Environmental problems of the agro-industrial complex: a lawyer’s view vol.273, 2020, https://doi.org/10.1051/e3sconf/202127308035
  3. Effects of oxytetracycline on plant growth, phosphorus uptake, and carboxylates in the rhizosheath of alfalfa vol.461, pp.1, 2020, https://doi.org/10.1007/s11104-021-04840-0
  4. Divergent Effects of Antibiotics on Plants and Microbiota in Soils with Contrasting Humus Content vol.232, pp.12, 2020, https://doi.org/10.1007/s11270-021-05459-8