DOI QR코드

DOI QR Code

중량식 라이시미터에서 물관리에 따른 배추, 옥수수의 적정 및 최소 물 필요량 산정

Estimation of Optimal and Minimal Water Requirement for Chinese Cabbage and Maize on Water Management using Weighable Lysimeters

  • 옥정훈 (농촌진흥청 국립농업과학원 토양비료과) ;
  • 한경화 (농촌진흥청 국립농업과학원 토양비료과) ;
  • 허승오 (농촌진흥청 국립농업과학원 토양비료과) ;
  • 황선아 (농촌진흥청 국립농업과학원 토양비료과) ;
  • 김동진 (농촌진흥청 국립농업과학원 토양비료과)
  • Ok, Jung-hun (Division of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Han, Kyung-hwa (Division of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Hur, Seoung-oh (Division of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Hwang, Seon-Ah (Division of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Dong-Jin (Division of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration)
  • 투고 : 2020.08.31
  • 심사 : 2020.09.28
  • 발행 : 2020.09.30

초록

본 연구에서는 중량식 라이시미터를 이용하여 토양 및 물관리 방법에 따라 배추와 옥수수 재배기간 동안 물수지를 평가하였으며, 작물 생산성과 물 부족 상황을 고려하여 작물 수분스트레스 계수와 최소 물 필요량을 산정하였다. 2018 년 배추 재배는 정식 2 주 후 빈번한 강우로 인해 관개가 실시되지 않아 무관개구와 적습관개구의 관개량 차이가 없었으며, 생산량 차이 또한 나타나지 않았다. 2018 년 배추 재배를 제외하고 배추와 옥수수 재배에서 적습관개구가 무관개구보다 생산량이 높게 나타났으며 대체적으로 증발산량 또한 높게 나타났다. 생산량과 증발산량은 밀접한 관련이 있으며 바이오매스 증가에 따라 증산작용이 활발해짐을 알 수 있었다. 작물 수분스트레스 계수는 배추 중기 0.8, 후기 0.8, 옥수수 중기 0.8, 후기 0.5 로 산정되었다. 배추와 옥수수의 최소 물 필요량(2017 년 배추 196.2 mm, 2018 년 옥수수 321.0 mm)은 적정 물 필요량(배추 239.4 mm, 2018 년 옥수수 466.9 mm) 대비 각각 82.0%, 68.8% 수준으로 나타났다. 이러한 산정 결과는 물부족 시기에 최소 관수량을 확보하여 작물 재배를 위한 물관리의 기초자료로 활용할 수 있을 것으로 생각된다.

In this study, we performed to evaluate the water balance during the cultivation of Chinese cabbage and maize according to the soil type and water management method using weighable lysimeters, and to estimate the crop water stress coefficient and minimal water requirement by considering crop productivity and water deficiency. In 2018, Chinese cabbage cultivation period was not irrigated due to frequent rainfall two weeks after planting, so there was no difference in irrigation amount between the non-irrigated and the irrigated and little difference in crop yield. Excluding the Chinese cabbage cultivation in 2018, in the cultivation of Chinese cabbage and maize, the crop yield of irrigated plots was higher than that of non-irrigated plots. The evapotranspiration of irrigated plots was also generally higher than non-irrigated plots. Crop yield and evapotranspiration are closely related, and transpiration is active as biomass increases. The crop water stress coefficients in the middle and the late stage were 0.8 and 0.8 for Chinese cabbage and 0.8 and 0.5 for maize, respectively. The minimal water requirements for Chinese cabbage and maize were 82.0% and 68.8%, respectively, compared to the optimal water requirements (239.4 mm for Chinese cabbage and 466.9 mm for maize). These results can be used as basic data for water management for crop cultivation by securing the minimum amount of irrigation in case of water deficiency.

키워드

참고문헌

  1. Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998: Crop evapotranspiration: Guidelines for computing crop requirements. Irrigation and Drainage Paper 56, United Nations-Food and Agricultural Organization (FAO), Rome, Italy.
  2. Anapalli, S. S., L. R. Ahuja, P. H. Gowda, L. Ma, G. Marek, S. R. Evett, and T. A. Howell, 2016: Simulation of crop evapotranspiration and crop coefficients with data in weighing lysimeters. Agricultural Water Management 177, 274-283. https://doi.org/10.1016/j.agwat.2016.08.009
  3. Assouline, S, 2006: Modeling the relationship between soil bulk density and the hydraulic conductivity function. Vadose Zone Journal 5(2), 697-705. https://doi.org/10.2136/vzj2005.0084
  4. Blake, G. R., and K. H. Hartge, 1986: Bulk density in methods of soil analysis. In: A. Klute (ed.). Method of soil analysis. Part 1. (2nd edition). American Society of Agronomy, Madison, Wisconsin, USA.
  5. Durner, W., 1994: Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resource Research 30(2), 211-223. https://doi.org/10.1029/93WR02676
  6. Eom, K. C., D. S. Oh, K. C. Song, I. S. Jo, and D. W. Seo, 1999: A guide book for water management of upland crops. National Institute of Agricultural Science and Technology, RDA, Suwon, Korea.
  7. Gee, G. W., and J. W. Bauder, 1986: Particle size analysis. In: A. Klute (ed.). Method of soil analysis. Part 1. (2nd edition). American Society of Agronomy, Madison, Wisconsin, USA.
  8. Hanjra, M. A., and M. E. Qureshi, 2010: Global water crisis and future food security in an era of climate change. Food Policy 35, 365-377. https://doi.org/10.1016/j.foodpol.2010.05.006
  9. Hargreaves, G. H., and R. G. Allen, 2003: History and evaluation of Hargreaves evapotranspiration. Journal of Irrigation and Drainage Engineering 129(1), 53-63. https://doi.org/10.1061/(ASCE)0733-9437(2003)129:1(53)
  10. Hargreaves, G. H., and Z. A. Samani, 1985: Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture 1(2), 96-99. https://doi.org/10.13031/2013.26773
  11. Hillel, D., 1998: Environmental soil physics: fundamentals, applications, and environmental considerations. Academic Press, California, USA.
  12. Jung, Y. S., H. D. Sa, S. Kang, S. B. Oh, and J. S. Lee, 2015: Soil water characteristic curve using volumetric pressure plate extractor incorporated with TDR system. Journal of the Korean Geotechnical Society 31(8), 17-28. https://doi.org/10.7843/kgs.2015.31.8.17
  13. Keith, B., and P. Germann, 1982: Macropores and water flow in soils. Water Resource Research 18(5), 1311-1325. https://doi.org/10.1029/WR018i005p01311
  14. Kim, D. J., K. H. Han, Y. S. Zhang, H. R. Cho, S. A. Hwang, and J. H. Ok, 2019: Verification of reference evapotranspiration estimated weighable lysimeters and its applicability. Korean Journal of Soil Science and Fertilizer 52(3), 284-296.
  15. Klammler, G., and J. Fank, 2014: Determining water and nitrogen balances for beneficial management practices using lysimeters at Wagna test site (Austria). Science of the Total Environment 499, 448-462. https://doi.org/10.1016/j.scitotenv.2014.06.009
  16. KMA (Korea Meteorological Administration), 2020: https://data.kma.go.kr/cmmn/main.do.
  17. Lee, Y. H., H. S. Cho, J. H. Kim, W. G. Sang, P. Shin, J. K. Baek, and M. C. Seo, 2018: Effect of carbon dioxide concentration, temperature, and relative drought on growth responses and yield in spring potato (Solanum tuberosum L.). Korean Journal of Agricultural and Forest Meteorology 20(2), 149-158. https://doi.org/10.5532/KJAFM.2018.20.2.149
  18. Lee, Y. H., W. G. Sang, J. I. Cho, and M. C. Seo, 2019: Duration of drought stress effects on soybean growth characteristic and seed yield distribution patterns. Korean Journal of Agricultural and Forest Meteorology 21(4), 269-276. https://doi.org/10.5532/KJAFM.2019.21.4.269
  19. Lee, Y. J, K. H. Han, S. B. Lee, J. K. Sung, Y. S. Song, and D. B. Lee, 2017: Nutrient leaching and crop uptake in weighing lysimeter planted with soybean as affected by water management. Korean Journal of Environmental Agriculture 36(3), 147-153. https://doi.org/10.5338/KJEA.2017.36.3.30
  20. Meisner, R., M. N. V. Prasad, G. Du Laing, and J. Rinklebe, 2010: Lysimeter application for measuring the water and solute fluxes with high precision. Current Science 99(5), 601-607.
  21. MOLIT, 2011: Water resource long-term plan (2011-2020). Ministry of Land, Infrastructure and Transport, Gwacheon, Korea.
  22. NIAS, 2017: Fertilization standard on crops (3rd edition). National Institute of Agricultural Sciences, RDA, Wanju, Korea.
  23. Ok, J. H., K. H. Han, Y. J. Lee, Y. S. Zhang, H. R. Cho, S. A. Hwang, S. S. Kim, J. H. Lee, and D. J. Kim, 2018: Water balance for Chinese cabbage in spring season with different upland soils evaluated using weighable lysimeters. Korean Journal of Soil Science and Fertilizer 51(4), 555-563. https://doi.org/10.7745/KJSSF.2018.51.4.555
  24. Ok, J. H., K. H. Han, Y. S. Zhang, H. R. Cho, S. A. Hwang, and D. J. Kim, 2019: Weighable lysimeter study for water balance estimation of Chinese cabbage in the fall season. Korean Journal of Soil Science and Fertilizer 52(4), 325-333.
  25. Seo, M. J, K. H. Han, K. H. Jung, H. R. Cho, Y. S. Zhang, and S. Y. Choi, 2016: Effect of temperature and plow pan on water movement in monolithic weighable lysimeter with paddy sandy loam soil during winter season. Korean Journal of Soil Science and Fertilizer 49(4), 300-309. https://doi.org/10.7745/KJSSF.2016.49.4.300
  26. Vargas-Amelin, E., and P. Pindado, 2014: The challenge of climate change in Spain: Water resources, agriculture and land. Journal of Hydrology 518, 243-249. https://doi.org/10.1016/j.jhydrol.2013.11.035
  27. Vermeulen, S. J., E. Grainger-Jones, and X. Yao, 2014: Climate change, food security and small-scale producers. CCAFS Info Brief, CGIAR Research Program on Climate Change, Agriculture and Food Security, Wageningen, Netherlands.