DOI QR코드

DOI QR Code

국가산림자원조사와 장기생태연구 자료를 활용한 산림경관모형의 모수화 및 적용성 평가

Parameterization and Application of a Forest Landscape Model by Using National Forest Inventory and Long Term Ecological Research Data

  • 조원희 (국민대학교 산림자원학과) ;
  • 임원택 (국민대학교 산림자원학과) ;
  • 김은숙 (국립산림과학원 기후변화생태연구과) ;
  • 임종환 (국립산림과학원 기후변화생태연구과) ;
  • 고동욱 (국민대학교 산림환경시스템학과)
  • Cho, Wonhee (Department of Forest Resources, Kookmin University) ;
  • Lim, Wontaek (Department of Forest Resources, Kookmin University) ;
  • Kim, Eun-Sook (Forest Ecology & Climate Change Division, National Institute of Forest Science) ;
  • Lim, Jong-Hwan (Forest Ecology & Climate Change Division, National Institute of Forest Science) ;
  • Ko, Dongwook W. (Department of Forestry, Environment, and Systems, Kookmin University)
  • 투고 : 2020.03.16
  • 심사 : 2020.08.21
  • 발행 : 2020.09.30

초록

산림경관모형은 산림생태계의 복잡한 구조와 다양한 기능의 동적특성을 연구하는데 적합한 모형으로 평가받는다. 산림경관모형은 경관생태학을 기반으로 제작되었으며, 그 특성상 넓은 시공간적 규모를 다루기 때문에 새로운 지역에 적용하는데 환경특성, 수종특성 등에 대한 모수화와 검증에 어려움이 있다. 이에 이 연구에서는 산림경관모형 LANDIS-II Biomass succession 익스텐션에 대한 국내 적용성을 평가하기 위해 계방산 일대를 대상으로 1) 공간정보 입력자료 제작 및 수종특성 모수화, 2) 모형의 보정, 3) 모형의 적용 및 검증방안을 제시하였다. 모형에 적용한 총 14수종은 국가산림조사(National Forest Inventory; NFI), 장기생태조사자료, 아고산대조사자료 기반의 수종별 중요도를 기반으로 선정하였으며, 공간정보 입력자료는 30m 해상도의 수치표고모형을 기반으로 제작한 생태역 지도와 NFI와 장기생태조사자료 기반의 초기 식생형 지도 등을 제작하였다. 수종별 생장모수(ANPPmax, Maxbiomass)는 한국, 중국, 일본 등 동아시아 지역의 생리실험 문헌자료를 종합하여 선정한 수종별 생리특성 모수(FolN, SLWmax, Halfsat, 생장온도, 내음성 등)를 PnET-II 모형에 적용하여 추정하였다. 모형의 보정과 검증은 모형과 조사자료의 수종별 지상부생물량을 비교하여 산출한 결정계수(R2)와 최소 제곱근 오차(RMSE)를 통해 실시하였으며, 검증결과 0.98의 R2와 8.9의 RMSE의 준수한 결과를 나타냈다. 따라서, 이 연구를 기반으로 한반도의 산림경관 변화를 모사할 수 있을 것으로 판단되며 산림관리, 산불, 풍해, 병충해, 기후변화 등 외적요인에 따른 산림경관 변화에 대한 연구가 수행될 수 있을 것으로 기대된다.

Forest landscape models (FLMs) can be used to investigate the complex interactions of various ecological processes and patterns, which makes them useful tools to evaluate how environmental and anthropogenic variables can influence forest ecosystems. However, due to the large spatio-temporal scales in FLMs studies, parameterization and validation can be extremely challenging when applying to new study areas. To address this issue, we focused on the parameterization and application of a spatially explicit forest landscape model, LANDIS-II, to Mt. Gyebang, South Korea, with the use of the National Forest Inventory (NFI) and long-term ecological research (LTER) site data. In this study, we present the followings for the biomass succession extension of LANDIS-II: 1) species-specific and spatial parameters estimation for the biomass succession extension of LANDIS-II, 2) calibration, and 3) application and validation for Mt. Gyebang. For the biomass succession extension, we selected 14 tree species, and parameterized ecoregion map, initial community map, species growth characteristics. We produced ecoregion map using elevation, aspect, and topographic wetness index based on digital elevation model. Initial community map was produced based on NFI and sub-alpine survey data. Tree species growth parameters, such as aboveground net primary production and maximum aboveground biomass, were estimated from PnET-II model based on species physiological factors and environmental variables. Literature data were used to estimate species physiological factors, such as FolN, SLWmax, HalfSat, growing temperature, and shade tolerance. For calibration and validation purposes, we compared species-specific aboveground biomass of model outputs and NFI and sub-alpine survey data and calculated coefficient of determination (R2) and root mean square error (RMSE). The final model performed very well, with 0. 98 R2 and 8. 9 RMSE. This study can serve as a foundation for the use of FLMs to other applications such as comparing alternative forest management scenarios and natural disturbance effects.

키워드

참고문헌

  1. Aber, J. D., and J. M. Melillo, 1991: Terrestrial Ecosystems. Academic Press, Massachusetts, USA, 592pp.
  2. Aber, J. D ., S. V . Ollinger, C . A. F ederer, P. B . Reich, M. L. Goulden, D. W. Kicklighter, J. M. Melillo, and R. G. Lathrop, 1995: Predicting the effects of climate change on water yield and forest production in the Northeastern United States. Climate Research 5(3), 207-22. https://doi.org/10.3354/cr005207
  3. Baker, W. L., and D. Mladenoff, 1999: Spatial Modeling of Forest Landscape Change. Cambridge University Press, USA, 352pp.
  4. Beven, K. J., and M. J. Kirkby, 1979: A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin 24(1), 43-69. https://doi.org/10.1080/02626667909491834
  5. Botkin, D. B., Janak, J. F., and J. R. Waalis, 2009: Some ecological consequences of a computer model of forest growth. British Ecological Society 60(3), 849-872.
  6. Bruijn, A. D., E. J. Gustafson, B. R. Sturtevant, J. R. Foster, B. R. Miranda, N. I. Lichti, and D. F. Jacobs, 2014: Toward more robust projections of forest landscape dynamics under novel environmental conditions: Embedding PnET within LANDIS-II. Ecological Modelling 287, 44-57. https://doi.org/10.1016/j.ecolmodel.2014.05.004
  7. Cheon, K. I., 2014: A study on the spatial distribution characteristics and time serial changes of forest vegetation at Mt. Gyebang. Ph.D. Thesis. Kyungpook National University, Daegu, 134pp. (in Korean with English abstract)
  8. Cheon, K. I., J. H. Chun, H. M. Yang, J. H. Lim, and J. H. Shin, 2014: Changes of understory vegetation structure for 10 years in long-term ecological research site at Mt. Gyebang. Journal of Korean Forest Society 103(1), 1-11. (in Korean with English abstract) https://doi.org/10.14578/jkfs.2014.103.1.1
  9. Cho, M. S., K. W. Kwon, G. N. Kim, and S. Y. Woo, 2008: Chlorophyll contents and growth performances of the five deciduous hardwood species growing under different shade treatments. Korean Journal of Agricultural and Forest Meteorology 10(4), 149-157. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2008.10.4.149
  10. Chung, J., H. Kim, S. Lee, K. Lee, M. Kim, and Y. Chun, 2015: Correlation analysis and growth prediction between climatic elements and radial growth for Pinus koraiensis. Korean Journal of Agricultural and Forest Meteorology 17(2), 85-92. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2015.17.2.85
  11. Forman, R. T. T., and M. Godron, 1981: Patches and structural componets for a landscape ecology. BioScience 31(10), 733-740. https://doi.org/10.2307/1308780
  12. Graumlich, L. J., 1991: Linked References Are Available on JSTOR for This Article : SUBALPINE TREE GROWTH, CLIMATE, AND INCREASING $CO_2$ : AN ASSESSMENT OF RECENT GROWTH TRENDS. Ecology 72(1), 1-11. https://doi.org/10.2307/1938895
  13. Gustafson, E. J., A. M. G. De Bruijn, and B. R. Miranda, 2015: PnET-Succession v1.0.1 Extension User Guide. LANDIS-II Foundation. Reproduction 0-9.
  14. Haga, C., T. Inoue, W. Hotta, R. Shibata, S. Hashimoto, H. Kurokawa, T. Machimura, T. Matsui, J. Morimoto, and H. Shibata, 2018: Simulation of natural capital and ecosystem services in a watershed in Northern Japan focusing on the future underuse of nature: By linking forest landscape model and social scenarios. Sustainability Science 14(1), 89-106. https://doi.org/10.1007/s11625-018-0623-9
  15. Han, Q., T. Kawasaki, S. Katahata, Y. Mukai, and Y. Chiba, 2003: Horizontal and vertical variations in photosynthetic capacity in a Pinus densiflora crown in relation to leaf nitrogen allocation and acclimation to irradiance. Tree Physiology 23(12), 851-857. https://doi.org/10.1093/treephys/23.12.851
  16. Han, S., J. An, T. K. Yoon, S. J. Yun, J. Hwang, M. S. Cho, and Y. Son, 2014: Species-specific growth responses of Betula costata, Fraxinus rhynchophylla, and Quercus variabilis seedlings to open-field artificial warming. Korean Journal of Agricultural and Forest Meteorology 16(3), 219-226. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2014.16.3.219
  17. He, H. S., and D. J. Mladenoff, 1999: The effects of seed dispersal on the simulation of long-term forest landscape change. Ecosystems 2(4), 308-319. https://doi.org/10.1007/s100219900082
  18. Ichie, T., Y. Kitahashi, S. Matsuki, Y. Maruyama, and T. Koike, 2002: The use of a portable nondestructive type nitrogen meter for leaves of woody plants in field studies. Photosynthetica 40(2), 289-292. https://doi.org/10.1023/A:1021362127882
  19. Jiang, H., C. Peng, M. J. Apps, Y. Zhang, P. M. Woodard, and Z. Wang, 1999: Modelling the net primary productivity of temperate forest ecosystems in China with a GAP model. Ecological Modelling 122(3), 225-238. https://doi.org/10.1016/S0304-3800(99)00139-8
  20. Kim, C. H., J. G. Oh, E. O. Kang, C. S. Yu, and J. K. Lim, 2014: Community distribution on mountain forest vegetation of the Gyebangsan area in the Odaesan national park, Korea. Korean Journal of Ecology and Environment 47(3), 135-145. (in Korean with English abstract) https://doi.org/10.11614/KSL.2014.47.3.135
  21. Kim, C. H., M. G. Jo, J. K. Kim, M. S. Choi, J. M. Chung, J. H. Kim, and H. S. Moon, 2012: Vegetation change and growing characteristics of Abies koreana population by altitude in Georim valley of Mt. Jiri. Journal of Agriculture & Life Science 46(1), 63-70. (in Korean with English abstract)
  22. Kitao, M., T. T. Lei, T. Koike, H. Tobita, and Y. Maruyama, 2003: Higher electron transport rate observed at low intercellular $CO_2$ concentration in long-term drought-acclimated leaves of Japanese mountain birch (Betula ermanii). Physiologia Plantarum 118(3), 406-413. https://doi.org/10.1034/j.1399-3054.2003.00120.x
  23. Kitaoka, S., and T. Koike, 2005: Seasonal and yearly variations in light use and nitrogen use by seedlings of four deciduous broad-leaved tree species invading larch plantations. Tree Physiology 25(4), 467-475. https://doi.org/10.1093/treephys/25.4.467
  24. Ko, D. W., J. H. Sung, Y. G. Lee, and C. R. Park, 2015: The current status and challenges of forest landscape models. Journal of Korean Forest Society 104(1), 1-13. (in Korean with English abstract) https://doi.org/10.14578/jkfs.2015.104.1.1
  25. Kong, W., S. Lee, H. Park, and J. A. Yu, 2012: Ecosystem vulnerability assessment of local government due to climate change. Journal of Climate Change Research 3(1), 51-69. (in Korean with English abstract)
  26. Koo, K. A., J. Kim, W. Kong, H. Jung, and G. Kim, 2016: Projecting the potential distribution of Abies koreana in Korea under the climate change based on RCP scenarios. Journal of the Korean Society of Envrionmental Restoration Technology 19(6), 19-30. (in Korean with English abstract)
  27. Koo, K. A., W. K. Park, and W. Kong, 2001: Dendrochronological analysis of Abies koreana W. at Mt. Halla, Korea: Effects of climate change on the growths. The Korean Journal of Ecology 24(5), 281-288. (in Korean with English abstract)
  28. Korea Forest Service, 2018: The 6th National Forest Plan. Korea Forest Service, Daejeon, South Korea, 153pp. (in Korean)
  29. Lambrecht, S. C., M. E. Loik, D. W. Inouye, and J. Harte, 2006: Reproductive and physiological responses to simulated climate warming for four subalpine species. New Phytologist 173(1), 121-134. https://doi.org/10.1111/j.1469-8137.2006.01892.x
  30. Lee, D. K.m, and J. U. Kim, 2007: Vulnerability assessment of sub-alpine vegetations by climate change in Korea. Journal of the Korean Society of Envrionmental Restoration Technology 10(6), 110-119. (in Korean with English abstract)
  31. Lee, J. W., and S. Y. Hong, 2006: A numerical simulation study of orographic effects for a heavy rainfall event over Korea using the WRF model. Atmosphere 16(4), 319-332. (in Korean with English abstract)
  32. Lee, K. J., 2014: Tree Physiology. SNUPRESS, 3rd edition (1993), Seoul, South Korea, 514pp. (in Korean)
  33. Lee, W. A., J. W. Shin, J. K. Choi, W. K. Lee, Y. J. Lee, S. H. Kim, and D. J. Jung, 2011: Diameter growth analysis for major species using national forest resource inventory - In the Gangwon- Do forests -. Journal of Forest Science 27(2), 113-118. (in Korean with English abstract)
  34. Lim, J. H., 1998: A forest dynamics model based on topographically-induced solar radiation and soil moisture on the Kwangneung experimental forest. Ph.D. Thesis, Seoul Nationlal University, Seoul, 145pp.
  35. Lim, J. H., J. C. Kim, K. J. Kim, Y. S. Son, Y. Sunwoo, and J. S. Han, 2008: Seasonal variations of monoterpene emissions from Pinus densiflora in East Asia. Chemosphere 73(4), 470-478. https://doi.org/10.1016/j.chemosphere.2008.06.048
  36. Liu, W., S. Li, L. Su, and J. Su, 2013: Variation and correlations of leaf traits of two taxus species with different shade tolerance along the light gradient. Polish Journal of Ecology 61(2), 329-339.
  37. Mitchell, A. K., 1998: Acclimation of Pacific Yew (Taxus brevifolia) foliage to Sun and Shade. Tree Physiology 18(11), 749-757. https://doi.org/10.1093/treephys/18.11.749
  38. Mitchell, A. K., and T. M. Hinckley, 1993: Effects of foliar nitrogen concentration on photosynthesis and water use efficiency in Douglas-Fir. Tree Physiology 12(4), 403-410. https://doi.org/10.1093/treephys/12.4.403
  39. Mladenoff, D. J., 2004: LANDIS and forest landscape models. Ecological Modelling 180(1), 7-19. https://doi.org/10.1016/j.ecolmodel.2004.03.016
  40. National Institute of Forest Science, 2014: Long-Term Ecological Research (LTER) on Forest Ecosystem Responses to Global Environmental Change. National Institute of Forest Science, Seoul, South Korea, 404pp. (in Korean)
  41. National Institute of Forest Science, 2015: Sub-Alpine Coniferous Forest in South Korea(I) Mt. Gyebang. National Institute of Forest Science, Seoul, South Korea, 96pp. (in Korean)
  42. Park, S. J., 2014: Generality and specificity of landforms of the Korean Peninsula, and its Sustainability. Journal of the Korean Geographical Society 49(5), 656-674. (in Korean with English abstract)
  43. Prado, C. H. B. A., and J. A. P. V. De Moraes, 1997: Photosynthetic capacity and specific leaf mass in twenty woody species of Cerrado Vegetation under field conditions. Photosynthetica 33(1), 103-112. https://doi.org/10.1023/A:1022183423630
  44. Qi, Y., G. Jin, and Z. Liu, 2013: Optical and litter collection methods for measuring leaf area index in an old-growth temperate forest in Northeastern China. Journal of Forest Research 18(5), 430-439. https://doi.org/10.1007/s10310-012-0370-1
  45. Reich, P. B., M. B. Walters, and D. S. Ellsworth, 1997: From tropics to tundra: Global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States of America 94(25), 13730-13734.
  46. Scheller, R. M., and D. J. Mladenoff, 2004: A forest growth and biomass module for a landscape simulation model, LANDIS: Design, Validation, and Application. Ecological Modelling 180(1), 211-229. https://doi.org/10.1016/j.ecolmodel.2004.01.022
  47. Scheller, R. M., J. B. Domingo, B. R. Sturtevant, J. S. Williams, A. Rudy, E. J. Gustafson, and D. J. Mladenoff, 2007: Design, development, and application of LANDIS-II, a spatial landscape simulation model with flexible temporal and spatial resolution. Ecological Modelling 201, 409-419. https://doi.org/10.1016/j.ecolmodel.2006.10.009
  48. Shao, G., P. Schall, and J. F. Weishampel, 1994: Dynamic simulations of mixed broadleaved-Pinus koraiensis forests in the Changbaishan biosphere reserve of China. Forest Ecology and Management 70, 169-181. https://doi.org/10.1016/0378-1127(94)90084-1
  49. Shim, K. M., Y. S. Kim, D. B. Lee, K. K. Kang, and K. H. So, 2012: Applicability of daily solar radiation estimated by mountain microclimate simulation model (MT-CLIM) in Korea. Korean Journal of Agricultural and Forest Meteorology 14(4), 260-264. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2012.14.4.260
  50. Son, Y., J. W. Hwang, Z. S. Kim, W. K. Lee, and J. S. Kim, 2001: Allometry and biomass of Korean Pine (Pinus koraiensis) in Central Korea. Bioresource Technology 78(3), 251-255. https://doi.org/10.1016/S0960-8524(01)00012-8
  51. Tak, K., Y. Chun, and P. M. Wood, 2007: The South Korean forest dilemma. International Forestry Review 9(1), 548-557. https://doi.org/10.1505/ifor.9.1.548
  52. Thompson, J. R., Lambert, K. F., Foster, D. R., Broadbent, E. N., Blumstein, M., Zambrano, A. M. A., and Fan, Y., 2016: The consequences of four land-use scenarios for forest ecosystems and the services they provide. ECOSPHERE 7(10), 1-22.
  53. Thuiller, W., M. B. Araujo, and S. Lavorel, 2003: Generalized models vs. classification tree analysis: Predicting spatial distributions of plant species at different scales. Journal of Vegetation Science 14(5), 669-680. https://doi.org/10.1111/j.1654-1103.2003.tb02199.x
  54. Turner, M. G., R. H. Gardener, and R. V. O'Neil, 2001: Landscape Ecology. Springer-Verlag New York Inc, New York, USA, 406pp.
  55. Udo, S. O., and T. O. Aro, 1999: Global PAR related to global solar radiation for Central Nigeria. Agricultural and Forest Meteorology 97(1), 21-31. https://doi.org/10.1016/S0168-1923(99)00055-6
  56. United States Department of Agriculture, 2014: Minnesota Forest Ecosystem Vulnerability Assessment and Synthesis: A Report from the Northwoods Climate Change Response Framework Project. USDA Forest Service, Delaware, USA, 240pp.
  57. United States Department of Agriculture, 1989: Mtclim - a Mountain Microclimate Simulation-Model. USDA Forest Service, 52pp.
  58. Wang, C., J. He, T. H. Zhao, Y. Cao, G. Wang, B. Sun, X. Yan, W. Guo, and M. H. Li, 2019: The smaller the leaf Is, the faster the leaf water loses in a temperate forest. Frontiers in Plant Science 10(1), 1-12. https://doi.org/10.3389/fpls.2019.00001
  59. Wang, X., J. Ye, B. Li, J. Zhang, F. Lin, and Z. Hao, 2010: Spatial distributions of species in an old-growth temperate forest, Northeastern China. Canadian Journal of Forest Research 40(6), 1011-1019. https://doi.org/10.1139/X10-056
  60. Woodward, A., E. G. Schreiner, and D. G. Silsbee, 1995: Climate, geography, and tree establishment in subalpine meadows of the Olympic Mountains, Washington, USA. Arctic and Alpine Research 27(3), 217-225. https://doi.org/10.2307/1551952
  61. Xiaodong, Y. and H. H. Shugart, 2005: FAREAST: A forest gap model to simulate dynamics and patterns of Eastern Eurasian forests. Journal of Biogeography 32(9), 1641-1658. https://doi.org/10.1111/j.1365-2699.2005.01293.x
  62. Yan, C. F., S. J. Han, Y. M. Zhou, C. G. Wang, G. H. Dai, W. F. Xiao, and M. H. Li, 2012: Needle-Age related variability in nitrogen, mobile carbohydrates, and ${\delta}$ 13c within Pinus koraiensis tree crowns. PLoS ONE 7(4), 16-19.
  63. Yim, Y., 1977: Distribution of forest vegetation and climate in the Korean Peninsula: Iii. Distribution of tree species along the thermal gradient. Japanese Journal of Ecology 27, 177-189.