DOI QR코드

DOI QR Code

Application of Scanning Electron Microscopy (SEM) for Biotically Induced Microstructure Observation in Sedimentary Sample of Natural Condition

주사전자현미경 분석을 활용한 자연환경 퇴적시료의 생물기원구조 관찰

  • Park, Hanbeom (Department of Earth System Sciences, Yonsei University) ;
  • Kim, Jinwook (Department of Earth System Sciences, Yonsei University)
  • 박한범 (연세대학교지구시스템과학과) ;
  • 김진욱 (연세대학교지구시스템과학과)
  • Received : 2020.09.09
  • Accepted : 2020.09.22
  • Published : 2020.09.30

Abstract

The activity of living microorganism directly or indirectly affects to the biomineralization in sediments and rocks that display the unique biotic structure. Minerals in the biotic structures showed unique properties and bypass the thermodynamic and kinetic barriers. Therefore, investigations on the biotically induced microstructure is essential to identify the new mineral formation mechanism by analyzing crystal structures and morphology at a nano-scale. The significant implication as well as advantages of using scanning electron microscopy to characterize the biotic structures were discussed in this paper for the examples of hydrothermal vent area microbial mat and deep-sea ferromanganese crust sample.

생물체의 활동 특히 미생물의 활동은 직·간접적으로 전 지구적으로 분포하는 퇴적물 및 암석 내부 광물의 형성 및 변형에 영향을 주고, 일부는 특징적인 생물기원구조를 형성한다. 특히, 특징적인 생물기원구조에 분포하는 광물은 기존에 알려진 무기적 과정을 통하여 형성되기 어려운 환경에서 형성되기도 하고, 무기적 과정을 통하여 형성된 광물과는 다른 물성 및 특성을 나타낸다. 이러한 생물체의 영향을 받아 형성된 생물기원구조에 대해 연구·분석하는 것은 새로운 광물 형성 메커니즘을 규명하는데 필수적이라 할 수 있다. 따라서 본 논문은 심해저 망간각 및 해저열수분출공 지역 미생물 매트 시료를 예로 들어, 주사전자현미경 분석을 통한 자연환경에 분포하는 생물기원구조 관찰에 대해 소개하고 분석방법, 장점 및 활용에 대해 설명하고자 한다.

Keywords

References

  1. Allen, M.A., Goh, F., Burns, B.P., and Neilan, B.A. (2009) Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in the hypersaline lagoon of Shark Bay. Geobiology, 7(1), 82-96. https://doi.org/10.1111/j.1472-4669.2008.00187.x
  2. Bau, M. and Moller, P. (1993) Rare earth element systematics of the chemically precipitated component in Early Precambrian iron formations and the evolution of the terrestrial atmosphere-hydrosphere-lithosphere system. Geochimica et Cosmochimica Acta, 57(10), 2239-2249. https://doi.org/10.1016/0016-7037(93)90566-F
  3. Dolgikh, G.I., Batyushin, G.N., Valentin, D.I., Dolgikh, S.G., Kovalev, S.N., Ovcharenko, V.V., and Yakovenko, S.V. (2002) Seismoacoustic Hydrophysical Complex for Monitoring the Atmosphere-Hydrosphere-Lithosphere System. Instruments and Experimental Techniques, 45(3), 401-403. https://doi.org/10.1023/A:1016031925259
  4. Emerson, D. and Moyer, C.L. (2002) Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition. Applied and Environmental Microbiology, 68(6), 3085-3093. https://doi.org/10.1128/AEM.68.6.3085-3093.2002
  5. Gat, J.R. and Airey, P.L. (2006) Stable water isotopes in the atmosphere/biosphere/lithosphere interface: scaling-up from the local to continental scale, under humid and dry conditions. Global and Planetary Change, 51(1-2), 25-33. https://doi.org/10.1016/j.gloplacha.2005.12.004
  6. Govenar, B. (2012) Energy transfer through food webs at hydrothermal vents: Linking the lithosphere to the biosphere. Oceanography, 25(1), 246-255. https://doi.org/10.5670/oceanog.2012.23
  7. Haferburg, G. and Kothe, E. (2007) Microbes and metals: interactions in the environment. Journal of basic microbiology, 47(6), 453-467. https://doi.org/10.1002/jobm.200700275
  8. Haferburg, G. and Kothe, E. (2012) Biogeosciences in heavy metal-contaminated soils. In Bio-Geo Interactions in Metal-Contaminated Soils (pp. 17-34). Springer, Berlin, Heidelberg.
  9. Han, R., Liu, T., Li, F., Li, X., Chen, D., and Wu, Y. (2018) Dependence of secondary mineral formation on Fe (II) production from ferrihydrite reduction by Shewanella oneidensis MR-1. ACS Earth and Space Chemistry, 2(4), 399-409. https://doi.org/10.1021/acsearthspacechem.7b00132
  10. Hein, J.R. and Koschinsky, A. (2014). Deep-ocean ferromanganese crusts and nodules.
  11. Iglesias-Rodriguez, M.D., Halloran, P.R., Rickaby, R.E., Hall, I.R., Colmenero-Hidalgo, E., Gittins, J.R., Green, R.H., Tyrrell, T., Gibbs, S.J., Dassow, P., Rehm, E., Armbrust, E.V., and Boessenkool, K. P. (2008) Phytoplankton calcification in a high-CO2 world. science, 320(5874), 336-340. https://doi.org/10.1126/science.1154122
  12. Kim, J.W., Peacor, D. R., Tessier, D., and Elsass, F. (1995) A technique for maintaining texture and permanent expansion of smectite interlayers for TEM observations. Clays and clay minerals, 43(1), 51-57. https://doi.org/10.1346/CCMN.1995.0430106
  13. Kim, J., Dong, H., Seabaugh, J., Newell, S. W., and Eberl, D. D. (2004) Role of microbes in the smectite-to-illite reaction. Science, 303(5659), 830-832. https://doi.org/10.1126/science.1093245
  14. Kim, J., Dong, H., Yang, K., Park, H., Elliott, W.C., Spivack, A., Koo, T., Kim, G., Morono, Y., Henkel, S., Inagaki, F., Zeng, Q., Hoshino, T., and Heuer, B. (2019) Naturally occurring, microbially induced smectite-to-illite reaction. Geology, 47(6), 535-539. https://doi.org/10.1130/G46122.1
  15. Koschinsky, A., Stascheit, A., Bau, M., and Halbach, P. (1997) Effects of phosphatization on the geochemical and mineralogical composition of marine ferromanganese crusts. Geochimica et Cosmochimica Acta, 61(19), 4079-4094. https://doi.org/10.1016/S0016-7037(97)00231-7
  16. Larock, P.A. and Ehrlich, H.L. (1975) Observations of bacterial microcolonies on the surface of ferromanganese nodules from Blake Plateau by scanning electron microscopy. Microbial ecology, 2(1), 84-96. https://doi.org/10.1007/BF02010383
  17. Li, Y.H. (1972) Geochemical mass balance among lithosphere, hydrosphere, and atmosphere. American Journal of Science, 272(2), 119-137. https://doi.org/10.2475/ajs.272.2.119
  18. Lovell, R.D., Jarvis, S.C., and Bardgett, R.D. (1995) Soil microbial biomass and activity in long-term grassland: effects of management changes. Soil Biology and Biochemistry, 27(7), 969-975. https://doi.org/10.1016/0038-0717(94)00241-R
  19. Lysyuk, G.N. (2011, September) Biomineral microstructures in ferromanganese nodules: evidence of the biological and abiogenous origin. In Instruments, Methods, and Missions for Astrobiology XIV (Vol. 8152, p. 815207). International Society for Optics and Photonics.
  20. Marino, E., Gonzalez, F. J., Lunar, R., Reyes, J., Medialdea, T., Castillo-Carrion, M., Bellido, E., and Somoza, L. (2018) High-resolution analysis of critical minerals and elements in Fe-Mn crusts from the Canary Island Seamount Province (Atlantic Ocean). Minerals, 8(7), 285. https://doi.org/10.3390/min8070285
  21. Martin, Y.E. and Johnson, E.A. (2012) Biogeosciences survey: Studying interactions of the biosphere with the lithosphere, hydrosphere and atmosphere. Progress in Physical Geography, 36(6), 833-852. https://doi.org/10.1177/0309133312457107
  22. Mbow, C. (2014). Biogeoscience: Africa's greenhouse-gas budget is in the red. Nature, 508(7495), 192-193. https://doi.org/10.1038/508192a
  23. Picard, A., Kappler, A., Schmid, G., Quaroni, L., and Obst, M. (2015) Experimental diagenesis of organo-mineral structures formed by microaerophilic Fe (II)-oxidizing bacteria. Nature Communications, 6(1), 1-8.
  24. Riquelme, C., Marshall Hathaway, J.J., Enes Dapkevicius, M.D.L., Miller, A.Z., Kooser, A., Northup, D.E., Jurado, V., Fernandez, O., Saiz-Jimenez, C., and Cheeptham, N. (2015) Actinobacterial diversity in volcanic caves and associated geomicrobiological interactions. Frontiers in microbiology, 6, 1342. https://doi.org/10.3389/fmicb.2015.01342
  25. Schindler, M. and Dorn, R.I. (2017) Coatings on rocks and minerals: The interface between the lithosphere and the biosphere, hydrosphere, and atmosphere. Elements: An International Magazine of Mineralogy, Geochemistry, and Petrology, 13(3), 155-158. https://doi.org/10.2113/gselements.13.3.155
  26. Sparling, G.P. and West, A.W. (1989) Importance of soil water content when estimating soil microbial C, N and P by the fumigation-extraction methods. Soil Biology and Biochemistry, 21(2), 245-253. https://doi.org/10.1016/0038-0717(89)90101-6
  27. Templeton, A.S., Knowles, E.J., Eldridge, D.L., Arey, B.W., Dohnalkova, A.C., Webb, S.M., Bailey, B.E., Tebo, B.M., and Staudigel, H. (2009) A seafloor microbial biome hosted within incipient ferromanganese crusts. Nature Geoscience, 2(12), 872-876. https://doi.org/10.1038/ngeo696
  28. Tivey, M.K. (2007) Generation of seafloor hydrothermal vent fluids and associated mineral deposits. Oceanography, 20(1), 50-65. https://doi.org/10.5670/oceanog.2007.80
  29. Trail, D., Tailby, N.D., Sochko, M., and Ackerson, M.R. (2015) Possible biosphere-lithosphere interactions preserved in igneous zircon and implications for Hadean earth. Astrobiology, 15(7), 575-586. https://doi.org/10.1089/ast.2014.1248
  30. Wang, X., Schroder, H.C., SchloBmacher, U., and Muller, W.E. (2009a) Organized bacterial assemblies in manganese nodules: evidence for a role of S-layers in metal deposition. Geo-Marine Letters, 29(2), 85-91. https://doi.org/10.1007/s00367-008-0125-3
  31. Wang, X.H., SchloBmacher, U., Natalio, F., Schroder, H.C., Wolf, S.E., Tremel, W., and Muller, W.E. (2009b) Evidence for biogenic processes during formation of ferromanganese crusts from the Pacific Ocean: Implications of biologically induced mineralization. Micron, 40(5-6), 526-535. https://doi.org/10.1016/j.micron.2009.04.005
  32. Yang, K. and Kim, J. (2016) Electron Energy Loss Spectroscopy (EELS) application to mineral formation. Journal of the Mineralogical Society of Korea, 29(2), 73-78. https://doi.org/10.9727/jmsk.2016.29.2.73
  33. Yang, K., Park, H., Son, S.K., Baik, H., Park, K., Kim, J., Yoon, J., Park, C., and Kim, J. (2019) Electron microscopy study on the formation of ferromanganese crusts, western Pacific Magellan Seamounts. Marine Geology, 410, 32-41. https://doi.org/10.1016/j.margeo.2019.01.001