DOI QR코드

DOI QR Code

Validation of Reference Genes for Quantifying Changes in Physiological Gene Expression in Apple Tree under Cold Stress and Virus Infection

저온과 바이러스 감염에 노출된 사과나무의 생리적 유전자 정량 측정용 유전자들의 발현 분석 및 검증

  • Yoon, Ju-Yeon (Department of Horticultural and Herbal Crop Environment, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Jeong, Jae-Hoon (Department of Fruit Research, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Choi, Seung-Kook (Department of Research Planning and Coordination, Rural Development Administration)
  • 윤주연 (국립원예특작과학원 원예특작환경과) ;
  • 정재훈 (국립원예특작과학원 과수과) ;
  • 최승국 (농촌진흥청 연구정책국 연구운영과)
  • Received : 2020.07.12
  • Accepted : 2020.08.31
  • Published : 2020.09.30

Abstract

Quantitative reverse transcription PCR is used for gene expression analysis as the accurate and sensitive method. To analyze quantification of gene expression changes in apple plants, 10 housekeeping genes (ACT, CKL, EF-1α, GAPDH, MDH, PDI, THFs, UBC, UBC10, and WD40) were evaluated for their stability of expression during infection by Apple stem grooving virus (ASGV) or in cold-stress apple plant buds. Five reference-gene validation programs were used to establish the order of the most stable genes for ASGV as CKL>THFs>GAPDH>ACT, and the least stable genes WD40CKL>UBC10, and the least stable genes were ACT

정량적역전사중합효소연쇄반응(quantitative reverse transcription PCR)은 정확하고 민감한 방법으로 유전자 발현분석에 사용된다. 사과 식물에서 유전자 발현 변화의 정량적 변화를 분석하기 위해, 사과 잎검은점 바이러스(Apple stem grooving virus, ASGV)에 의한 감염 동안 발현의 안정성에 대해 10개 참조유전자들(ACT, CKL, EF-1α, GAPDH, MDH, PDI, THF, UBC, UBC10 및 WD40)을 평가하였다. AGSV 감염 또는 저온 처리된 사과 식물에서의 10개 참조유전자 발현의 안정은 5가지 프로그램을 사용하여 분석하였다. ASGV 감염 사과식물의 잎 조직에서는 CKL>THFs>GAPDH>ACT 순서로 가장 안정한 유전자로 분석되었으며 WD40CKL>UBC10이고 가장 안정하지 않은 유전자는 ACT

Keywords

References

  1. Adams, I., Harrison, C., Tomlinson, J. and Boonham, N. 2015. Microarray platform for the detection of a range of plant viruses and viroids. Methods Mol. Biol. 1302: 273-282. https://doi.org/10.1007/978-1-4939-2620-6_20
  2. An, J.-P., Li, R., Qu, F.-J., You, C.-X., Wang, X.-F. and Hao, Y.-J. 2018. R2R3-MYB transcription factor MdMYB23 is involved in the cold tolerance and proanthocyanidin accumulation in apple. Plant J. 96: 562-577. https://doi.org/10.1111/tpj.14050
  3. An, J.-P., Wang, X.-F., Zhang, X.-W., Xu, H.-F., Bi, S.-Q., You, C.-X. et al. 2020. An apple MYB transcription factor regulates cold tolerance and anthocyanin accumulation and undergoes MIEL1-mediated degradation. Plant Biotechnol. J. 18: 337-353. https://doi.org/10.1111/pbi.13201
  4. Andersen, C. L., Jensen, J. L. and Orntoft, T. F. 2004. Normalization of real-time quantitative reverse transcription-PCR data: a modelbased variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64: 5245-5250. https://doi.org/10.1158/0008-5472.CAN-04-0496
  5. Baek, E., Yoon, J.-Y. and Palukaitis, P. 2017. Validation of reference genes for quantifying changes in gene expression in virusinfected tobacco. Virology 510: 29-39. https://doi.org/10.1016/j.virol.2017.06.029
  6. Broothaerts, W., Van Nerum, I. and Keulemans, J. 2004. Update on and review of the incompatibility (S-) genotypes of apple cultivars. HortScience 39: 943-947. https://doi.org/10.21273/hortsci.39.5.943
  7. Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M. et al. 2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55: 611-622. https://doi.org/10.1373/clinchem.2008.112797
  8. Chao, A. and Jost, L. 2012. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93: 2533-2547. https://doi.org/10.1890/11-1952.1
  9. Chen, S., Ye, T., Hao, L., Chen, H., Wang, S., Fan, Z. et al. 2014. Infection of apple by apple stem grooving virus leads to extensive alterations in gene expression patterns but no disease symptoms. PLoS ONE 9: e95239. https://doi.org/10.1371/journal.pone.0095239
  10. Cheng, D., Zhang, Z., He, X. and Liang, G. 2013. Validation of reference genes in Solenopsis invicta in different developmental stages, castes and tissues. PLoS ONE 8: e57718. https://doi.org/10.1371/journal.pone.0057718
  11. Cho, I.-S., Igori, D., Lim, S., Choi, G.-S., Hammond, J., Lim, H.-S. et al. 2016. Deep sequencing analysis of apple infecting viruses in Korea. Plant Pathol. J. 32: 441-451. https://doi.org/10.5423/PPJ.OA.04.2016.0104
  12. Daccord, N., Celton, J.-M., Linsmith, G., Becker, C., Choisne, N., Schijlen, E. et al. 2017. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat. Genet. 49: 1099-1106. https://doi.org/10.1038/ng.3886
  13. Gadiou, S. and Kundu, J. K. 2012. Evaluation of reference genes for the relative quantification of apple stem grooving virus and apple mosaic virus in apple trees. Indian J. Virol. 23: 39-41. https://doi.org/10.1007/s13337-012-0065-4
  14. Gapper, N. E., Hertog, M., Lee, J., Buchanan, D. A., Leisso, R. S., Fei, Z. et al. 2017. Delayed response to cold stress is characterized by successive metabolic shifts culminating in apple fruit peel necrosis. BMC Plant Biol. 17: 77. https://doi.org/10.1186/s12870-017-1030-6
  15. Ishihara, T., Sato, Y. and Takahashi, H. 2015. Microarray analysis of Rgene- mediated resistance to viruses. Methods Mol. Biol. 1236: 197-218. https://doi.org/10.1007/978-1-4939-1743-3_15
  16. Jaakola, L. 2013. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci. 18: 477-483. https://doi.org/10.1016/j.tplants.2013.06.003
  17. Kinard, G. G., Scott, S. W. and Barnett, O. W. 1996. Detection of apple chlorotic leaf spot and apple stem grooving viruses using RTPCR. Plant Dis. 80: 616-621. https://doi.org/10.1094/PD-80-0616
  18. Lee, S.-H., Kwon, Y., Shin, H., Nam, S.-Y., Hong, E. Y., Kim, B. et al. 2017. Survey on virus infection for commercial nursery trees of major apple cultivars in Korea. Res. Plant Dis. 23: 355-362. (In Korean) https://doi.org/10.5423/RPD.2017.23.4.355
  19. Lilly, S. T., Drummond, R. S. M., Pearson, M. N. and MacDiarmid, R. M. 2011. Identification and validation of reference genes for normalization of transcripts from virus-infected Arabidopsis thaliana. Mol. Plant-Microbe Interact. 24: 294-304. https://doi.org/10.1094/MPMI-10-10-0236
  20. Liu, D., Shi, L., Han, C., Yu, J., Li, D. and Zhang, Y. 2012. Validation of reference genes for gene expression studies in virus-infected Nicotiana benthamiana using quantitative real-time PCR. PLoS One 7: e46451. https://doi.org/10.1371/journal.pone.0046451
  21. Ma, C., Liang, B., Chang, B., Yan, J., Liu, L., Wang, Y. et al. 2019. Transcriptome profiling of anthocyanin biosynthesis in the peel of 'Granny Smith' apples (Malus domestica) after bag removal. BMC Genomics 20: 353. https://doi.org/10.1186/s12864-019-5730-1
  22. Mascia, T., Santovito, E., Gallitelli, D. and Cillo, F. 2010. Evaluation of reference genes for quantitative reverse-transcription polymerase chain reaction normalization in infected tomato plants. Mol. Plant Pathol. 11: 805-816. https://doi.org/10.1111/j.1364-3703.2010.00646.x
  23. Menzel, W., Jelkmann, W. and Maiss, E. 2002. Detection of four apple viruses by multiplex RT-PCR assays with coamplification of plant mRNA as internal control. J. Virol. Methods 99: 81-92. https://doi.org/10.1016/S0166-0934(01)00381-0
  24. Ohira, K., Namba, S., Rozanov, M., Kusumi, T. and Tsuchizaki, T. 1995. Complete sequence of an infectious full-length cDNA clone of citrus tatter leaf capillovirus: comparative sequence analysis of capillovirus genomes. J Gen Virol. 6: 2305-2309.
  25. Pallas, V. and García, J. A. 2011. How do plant viruses induce disease? Interactions and interference with host components. J. Gen. Virol. 92: 2691-2705. https://doi.org/10.1099/vir.0.034603-0
  26. Pecman, A., Kutnjak, D., Gutierrez-Aguirre, I., Adams, I., Fox, A., Boonham, N. et al. 2017. Next generation sequencing for detection and discovery of plant viruses and viroids: comparison of two approaches. Front. Microbiol. 8: 1998. https://doi.org/10.3389/fmicb.2017.01998
  27. Pfaffl, M. W., Tichopad, A., Prgomet, C. and Neuvians, T. P. 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excelbased tool using pair-wise correlations. Biotechnol. Lett. 26: 509-515. https://doi.org/10.1023/B:BILE.0000019559.84305.47
  28. Postnikova, O. A. and Nemchinov, L. G. 2012. Comparative analysis of microarray data in Arabidopsis transcriptome during compatible interactions with plant viruses. Virol. J. 9: 101. https://doi.org/10.1186/1743-422X-9-101
  29. Reddy, D. S., Bhatnagar-Mathur, P., Cindhuri, K. S. and Sharma, K. K. 2013. Evaluation and validation of reference genes for normalization of quantitative real-time PCR based gene expression studies in peanut. PLoS One 8: e78555. https://doi.org/10.1371/journal.pone.0078555
  30. Rocha, A. J., Monteiro, J. E., Freire, J. E. C., Sousa, A. J. S. and Fonteles, C. S. R. 2015. Real time PCR: the use of reference genes and essential rules required to obtain normalisation data reliable to quantitative gene expression. J. Mol. Biol. Res. 5: 45-55. https://doi.org/10.5539/jmbr.v5n1p45
  31. Shinozaki, K. and Yamaguchi-Shinozaki, K. 2000. Molecular responses to dehydration and low temperature: differences and crosstalk between two stress signaling pathways. Curr. Opin. Plant Biol. 3: 217-223. https://doi.org/10.1016/S1369-5266(00)80068-0
  32. Shinozaki, K., Yamaguchi-Shinozaki, K. and Seki, M. 2003. Regulatory network of gene expression in the drought and cold stress responses. Curr. Opin. Plant Biol. 6: 410-417. https://doi.org/10.1016/S1369-5266(03)00092-X
  33. Silver, N., Best, S., Jiang, J. and Thein, S. L. 2006. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol. 7: 33. https://doi.org/10.1186/1471-2199-7-33
  34. Tang, F., Chu, L., Shu, W., He, X., Wang, L. and Lu, M. 2019. Selection and validation of reference genes for quantitative expression analysis of miRNAs and mRNAs in Poplar. Plant Methods 15: 35. https://doi.org/10.1186/s13007-019-0420-1
  35. Takos, A. M., Jaffe, F. W., Jacob, S. R., Bogs, J., Robinson, S. P. and Walker, A. R. 2006. Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol. 142: 1216-1232. https://doi.org/10.1104/pp.106.088104
  36. Thakur, P., Kumar, S., Malik, J. A., Berger, J. D. and Nayyar, H. 2010. Cold stress effects on reproductive development in grain crops: an overview. Environ. Exp. Bot. 67: 429-443. https://doi.org/10.1016/j.envexpbot.2009.09.004
  37. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A. et al. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3: research0034.1
  38. Velasco, R., Zharkikh, A., Affourtit, J., Dhingra, A., Cestaro, A., Kalyanaraman, A. et al. 2010. The genome of the domesticated apple (Malus $\times$ domestica Borkh.). Nat. Genet. 42: 833-839. https://doi.org/10.1038/ng.654
  39. Wan, Q., Chen, S., Shan, Z., Yang, Z., Chen, L., Zhang, C. et al. 2017. Stability evaluation of reference genes for gene expression analysis by RT-qPCR in soybean under different conditions. PLoS One 12: e0189405. https://doi.org/10.1371/journal.pone.0189405
  40. Wang, Z., Chen, Y., Fang, H., Shi, H., Chen, K., Zhang, Z. et al. 2014. Selection of reference genes for quantitative reverse-transcription polymerase chain reaction normalization in Brassica napus under various stress conditions. Mol. Gen. Genet. 289: 1023-1035. https://doi.org/10.1007/s00438-014-0853-1
  41. Webb, S. 2013. Getting over qPCR's technical hurdles. Biotechniques 55: 165-168.
  42. Whitham, T. G., Bailey, J. K., Schweitzer, J. A., Shuster, S. M., Bangert, R. K., LeRoy, C. J. et al. 2006. A framework for community and ecosystem genetics: from genes to ecosystems. Nat. Rev. Genet. 7: 510-523. https://doi.org/10.1038/nrg1877
  43. Wieczorek, P., Wrzesinska, B. and Obrepalska-Steplowska, A. 2013. Assessment of reference gene stability influenced by extremely divergent disease symptoms in Solanum lycopersicum L. J. Virol. Methods 194: 161-168. https://doi.org/10.1016/j.jviromet.2013.08.010
  44. Wood, G. A. 1979. Virus and Virus-like Diseases of Pome Fruits and Stone Fruits in New Zealand (DSIR Bulletin 226). Department of Scientific and Industrial Research, Wellington, New Zealand. 87 pp.
  45. Wu, Q., Ding, S.-W., Zhang, Y. and Zhu, S. 2015. Identification of viruses and viroids by next-generation sequencing and homology- dependent and homology-independent algorithms. Annu. Rev. Phytopathol. 53: 425-444. https://doi.org/10.1146/annurev-phyto-080614-120030
  46. Zhang, K., Niu, S., Di, D., Shi, L., Liu, D., Cao, X. et al. 2013. Selection of references genes for gene expression studies in virus-infected monocots using quantitative real-time PCR. J. Biotechnol. 168: 7-14. https://doi.org/10.1016/j.jbiotec.2013.08.008
  47. Zhu, L., Yang, C., You, Y., Liang, W., Wang, N., Fengwang, M. A. et al. 2019. Validation of reference genes for qRT-PCR analysis in peel and flesh of six apple cultivars (Malus domestica) at diverse stages of fruit development. Sci. Hortic. 244: 165-171. https://doi.org/10.1016/j.scienta.2018.09.033