Browse > Article
http://dx.doi.org/10.5423/RPD.2020.26.3.144

Validation of Reference Genes for Quantifying Changes in Physiological Gene Expression in Apple Tree under Cold Stress and Virus Infection  

Yoon, Ju-Yeon (Department of Horticultural and Herbal Crop Environment, National Institute of Horticultural and Herbal Science, Rural Development Administration)
Jeong, Jae-Hoon (Department of Fruit Research, National Institute of Horticultural and Herbal Science, Rural Development Administration)
Choi, Seung-Kook (Department of Research Planning and Coordination, Rural Development Administration)
Publication Information
Research in Plant Disease / v.26, no.3, 2020 , pp. 144-158 More about this Journal
Abstract
Quantitative reverse transcription PCR is used for gene expression analysis as the accurate and sensitive method. To analyze quantification of gene expression changes in apple plants, 10 housekeeping genes (ACT, CKL, EF-1α, GAPDH, MDH, PDI, THFs, UBC, UBC10, and WD40) were evaluated for their stability of expression during infection by Apple stem grooving virus (ASGV) or in cold-stress apple plant buds. Five reference-gene validation programs were used to establish the order of the most stable genes for ASGV as CKL>THFs>GAPDH>ACT, and the least stable genes WD40CKL>UBC10, and the least stable genes were ACT
Keywords
Cold stress; Physiologically stable gene; RT-qPCR; Validation; Virus;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Adams, I., Harrison, C., Tomlinson, J. and Boonham, N. 2015. Microarray platform for the detection of a range of plant viruses and viroids. Methods Mol. Biol. 1302: 273-282.   DOI
2 An, J.-P., Li, R., Qu, F.-J., You, C.-X., Wang, X.-F. and Hao, Y.-J. 2018. R2R3-MYB transcription factor MdMYB23 is involved in the cold tolerance and proanthocyanidin accumulation in apple. Plant J. 96: 562-577.   DOI
3 An, J.-P., Wang, X.-F., Zhang, X.-W., Xu, H.-F., Bi, S.-Q., You, C.-X. et al. 2020. An apple MYB transcription factor regulates cold tolerance and anthocyanin accumulation and undergoes MIEL1-mediated degradation. Plant Biotechnol. J. 18: 337-353.   DOI
4 Andersen, C. L., Jensen, J. L. and Orntoft, T. F. 2004. Normalization of real-time quantitative reverse transcription-PCR data: a modelbased variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64: 5245-5250.   DOI
5 Baek, E., Yoon, J.-Y. and Palukaitis, P. 2017. Validation of reference genes for quantifying changes in gene expression in virusinfected tobacco. Virology 510: 29-39.   DOI
6 Broothaerts, W., Van Nerum, I. and Keulemans, J. 2004. Update on and review of the incompatibility (S-) genotypes of apple cultivars. HortScience 39: 943-947.   DOI
7 Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M. et al. 2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55: 611-622.   DOI
8 Chao, A. and Jost, L. 2012. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93: 2533-2547.   DOI
9 Chen, S., Ye, T., Hao, L., Chen, H., Wang, S., Fan, Z. et al. 2014. Infection of apple by apple stem grooving virus leads to extensive alterations in gene expression patterns but no disease symptoms. PLoS ONE 9: e95239.   DOI
10 Cheng, D., Zhang, Z., He, X. and Liang, G. 2013. Validation of reference genes in Solenopsis invicta in different developmental stages, castes and tissues. PLoS ONE 8: e57718.   DOI
11 Cho, I.-S., Igori, D., Lim, S., Choi, G.-S., Hammond, J., Lim, H.-S. et al. 2016. Deep sequencing analysis of apple infecting viruses in Korea. Plant Pathol. J. 32: 441-451.   DOI
12 Daccord, N., Celton, J.-M., Linsmith, G., Becker, C., Choisne, N., Schijlen, E. et al. 2017. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat. Genet. 49: 1099-1106.   DOI
13 Gadiou, S. and Kundu, J. K. 2012. Evaluation of reference genes for the relative quantification of apple stem grooving virus and apple mosaic virus in apple trees. Indian J. Virol. 23: 39-41.   DOI
14 Shinozaki, K. and Yamaguchi-Shinozaki, K. 2000. Molecular responses to dehydration and low temperature: differences and crosstalk between two stress signaling pathways. Curr. Opin. Plant Biol. 3: 217-223.   DOI
15 Shinozaki, K., Yamaguchi-Shinozaki, K. and Seki, M. 2003. Regulatory network of gene expression in the drought and cold stress responses. Curr. Opin. Plant Biol. 6: 410-417.   DOI
16 Silver, N., Best, S., Jiang, J. and Thein, S. L. 2006. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol. 7: 33.   DOI
17 Tang, F., Chu, L., Shu, W., He, X., Wang, L. and Lu, M. 2019. Selection and validation of reference genes for quantitative expression analysis of miRNAs and mRNAs in Poplar. Plant Methods 15: 35.   DOI
18 Takos, A. M., Jaffe, F. W., Jacob, S. R., Bogs, J., Robinson, S. P. and Walker, A. R. 2006. Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol. 142: 1216-1232.   DOI
19 Gapper, N. E., Hertog, M., Lee, J., Buchanan, D. A., Leisso, R. S., Fei, Z. et al. 2017. Delayed response to cold stress is characterized by successive metabolic shifts culminating in apple fruit peel necrosis. BMC Plant Biol. 17: 77.   DOI
20 Thakur, P., Kumar, S., Malik, J. A., Berger, J. D. and Nayyar, H. 2010. Cold stress effects on reproductive development in grain crops: an overview. Environ. Exp. Bot. 67: 429-443.   DOI
21 Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A. et al. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3: research0034.1
22 Velasco, R., Zharkikh, A., Affourtit, J., Dhingra, A., Cestaro, A., Kalyanaraman, A. et al. 2010. The genome of the domesticated apple (Malus $\times$ domestica Borkh.). Nat. Genet. 42: 833-839.   DOI
23 Wan, Q., Chen, S., Shan, Z., Yang, Z., Chen, L., Zhang, C. et al. 2017. Stability evaluation of reference genes for gene expression analysis by RT-qPCR in soybean under different conditions. PLoS One 12: e0189405.   DOI
24 Wang, Z., Chen, Y., Fang, H., Shi, H., Chen, K., Zhang, Z. et al. 2014. Selection of reference genes for quantitative reverse-transcription polymerase chain reaction normalization in Brassica napus under various stress conditions. Mol. Gen. Genet. 289: 1023-1035.   DOI
25 Webb, S. 2013. Getting over qPCR's technical hurdles. Biotechniques 55: 165-168.
26 Wieczorek, P., Wrzesinska, B. and Obrepalska-Steplowska, A. 2013. Assessment of reference gene stability influenced by extremely divergent disease symptoms in Solanum lycopersicum L. J. Virol. Methods 194: 161-168.   DOI
27 Wood, G. A. 1979. Virus and Virus-like Diseases of Pome Fruits and Stone Fruits in New Zealand (DSIR Bulletin 226). Department of Scientific and Industrial Research, Wellington, New Zealand. 87 pp.
28 Ishihara, T., Sato, Y. and Takahashi, H. 2015. Microarray analysis of Rgene- mediated resistance to viruses. Methods Mol. Biol. 1236: 197-218.   DOI
29 Jaakola, L. 2013. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci. 18: 477-483.   DOI
30 Kinard, G. G., Scott, S. W. and Barnett, O. W. 1996. Detection of apple chlorotic leaf spot and apple stem grooving viruses using RTPCR. Plant Dis. 80: 616-621.   DOI
31 Lee, S.-H., Kwon, Y., Shin, H., Nam, S.-Y., Hong, E. Y., Kim, B. et al. 2017. Survey on virus infection for commercial nursery trees of major apple cultivars in Korea. Res. Plant Dis. 23: 355-362. (In Korean)   DOI
32 Lilly, S. T., Drummond, R. S. M., Pearson, M. N. and MacDiarmid, R. M. 2011. Identification and validation of reference genes for normalization of transcripts from virus-infected Arabidopsis thaliana. Mol. Plant-Microbe Interact. 24: 294-304.   DOI
33 Liu, D., Shi, L., Han, C., Yu, J., Li, D. and Zhang, Y. 2012. Validation of reference genes for gene expression studies in virus-infected Nicotiana benthamiana using quantitative real-time PCR. PLoS One 7: e46451.   DOI
34 Ma, C., Liang, B., Chang, B., Yan, J., Liu, L., Wang, Y. et al. 2019. Transcriptome profiling of anthocyanin biosynthesis in the peel of 'Granny Smith' apples (Malus domestica) after bag removal. BMC Genomics 20: 353.   DOI
35 Mascia, T., Santovito, E., Gallitelli, D. and Cillo, F. 2010. Evaluation of reference genes for quantitative reverse-transcription polymerase chain reaction normalization in infected tomato plants. Mol. Plant Pathol. 11: 805-816.   DOI
36 Wu, Q., Ding, S.-W., Zhang, Y. and Zhu, S. 2015. Identification of viruses and viroids by next-generation sequencing and homology- dependent and homology-independent algorithms. Annu. Rev. Phytopathol. 53: 425-444.   DOI
37 Zhang, K., Niu, S., Di, D., Shi, L., Liu, D., Cao, X. et al. 2013. Selection of references genes for gene expression studies in virus-infected monocots using quantitative real-time PCR. J. Biotechnol. 168: 7-14.   DOI
38 Zhu, L., Yang, C., You, Y., Liang, W., Wang, N., Fengwang, M. A. et al. 2019. Validation of reference genes for qRT-PCR analysis in peel and flesh of six apple cultivars (Malus domestica) at diverse stages of fruit development. Sci. Hortic. 244: 165-171.   DOI
39 Whitham, T. G., Bailey, J. K., Schweitzer, J. A., Shuster, S. M., Bangert, R. K., LeRoy, C. J. et al. 2006. A framework for community and ecosystem genetics: from genes to ecosystems. Nat. Rev. Genet. 7: 510-523.   DOI
40 Menzel, W., Jelkmann, W. and Maiss, E. 2002. Detection of four apple viruses by multiplex RT-PCR assays with coamplification of plant mRNA as internal control. J. Virol. Methods 99: 81-92.   DOI
41 Ohira, K., Namba, S., Rozanov, M., Kusumi, T. and Tsuchizaki, T. 1995. Complete sequence of an infectious full-length cDNA clone of citrus tatter leaf capillovirus: comparative sequence analysis of capillovirus genomes. J Gen Virol. 6: 2305-2309.
42 Pallas, V. and García, J. A. 2011. How do plant viruses induce disease? Interactions and interference with host components. J. Gen. Virol. 92: 2691-2705.   DOI
43 Pecman, A., Kutnjak, D., Gutierrez-Aguirre, I., Adams, I., Fox, A., Boonham, N. et al. 2017. Next generation sequencing for detection and discovery of plant viruses and viroids: comparison of two approaches. Front. Microbiol. 8: 1998.   DOI
44 Pfaffl, M. W., Tichopad, A., Prgomet, C. and Neuvians, T. P. 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excelbased tool using pair-wise correlations. Biotechnol. Lett. 26: 509-515.   DOI
45 Postnikova, O. A. and Nemchinov, L. G. 2012. Comparative analysis of microarray data in Arabidopsis transcriptome during compatible interactions with plant viruses. Virol. J. 9: 101.   DOI
46 Reddy, D. S., Bhatnagar-Mathur, P., Cindhuri, K. S. and Sharma, K. K. 2013. Evaluation and validation of reference genes for normalization of quantitative real-time PCR based gene expression studies in peanut. PLoS One 8: e78555.   DOI
47 Rocha, A. J., Monteiro, J. E., Freire, J. E. C., Sousa, A. J. S. and Fonteles, C. S. R. 2015. Real time PCR: the use of reference genes and essential rules required to obtain normalisation data reliable to quantitative gene expression. J. Mol. Biol. Res. 5: 45-55.   DOI