DOI QR코드

DOI QR Code

Tensile Properties and Thermal Conductivities of Mg-Al alloy with As-Cast and Discontinuous Precipitates Microstructures

주조 및 불연속 석출물 미세조직을 가지는 Mg-Al 합금의 인장 특성 및 열전도도

  • Jun, Joong-Hwan (Advanced Materials and Process R&D Department, Korea Institute of Industrial Technology)
  • 전중환 (한국생산기술연구원 융합소재공정연구부문)
  • Received : 2020.08.03
  • Accepted : 2020.08.31
  • Published : 2020.09.30

Abstract

The objective of this study was to investigate the tensile properties and thermal conductivities of Mg9.3%Al alloy in as-cast state and heat-treated state consisting of fully discontinuous precipitates (DPs), respectively. The fully DPs microstructure was obtained by solution treatment at 405℃ for 24 h, followed by furnace cooling to RT. The as-cast alloy showed a partially divorced eutectic β(Mg17Al12) phase particles formed along the α-(Mg) cell boundaries. The DPs had various apparent (α+β) interlamellar spacings, which is related to different transformation temperatures during the furnace cooling. The DPs microstructure exhibited better tensile strength than the as-cast one, resulting from the higher value of elongation in response to its more homogeneous microstructure. It is noticeable that the DPs microstructure had 12.4% higher thermal conductivity in average than the as-cast one between RT and 200℃. The XRD analyses revealed that the lower Al concentration in the α-(Mg) matrix may well be responsible for the better thermal conductivity of the DPs microstructure.

Keywords

References

  1. J. Song, J. She, D. Chen and F. Pan : J. Magnes. Alloy 8 (2020) 1. https://doi.org/10.1016/j.jma.2020.02.003
  2. H. Pan, F. Pan, R. Yang, J. Peng, C. Zhao, J. She, Z. Gao and A. Tang : J. Mater. Sci. 49 (2014) 3107. https://doi.org/10.1007/s10853-013-8012-3
  3. S. Lee, H. J. Ham, S. Y. Kwon, S. W. Kim and C. M. Suh : Int. J. Thermophys. 34 (2013) 2343. https://doi.org/10.1007/s10765-011-1145-1
  4. S. Li, X. Yang, J. Hou and W. Du : J. Magnes. Alloy 8 (2020) 78. https://doi.org/10.1016/j.jma.2019.08.002
  5. Y. Kumano, T. Ogura and T. Yamada : J. Electron. Packag. 131 (2009) 021007. https://doi.org/10.1115/1.3103947
  6. M. Cui, N. Chen, X. Yang, Y. Wang, Y. Bai and X. Zhang : J. Semicond. 30 (2009) 044011. https://doi.org/10.1088/1674-4926/30/4/044011
  7. T. Ying, M. Y. Zheng, Z. T. Li and X. G. Qiao : J. Alloy Compd. 608 (2014) 19. https://doi.org/10.1016/j.jallcom.2014.04.107
  8. M. Li and S. J. Zinkle : Comprehensive Nucl. Mater. 4 (2012) 667.
  9. T. Alam and A. H. Ansari : Int. J. Adv. Tech. Eng. Sci. 5 (2017) 278.
  10. M. J. Donachie : "Titanium: A Technical Guide", 2nd ed., ASM International, Materials Park, OH, 2000.
  11. J. Wilzer, F. Ludtke, S. Weber and W. Theisen : J. Mater. Sci. 48 (2013) 8483. https://doi.org/10.1007/s10853-013-7665-2
  12. W. Zheng, S. Li, B. Tand and D. Zeng : China Found. 3 (2006 ) 270.
  13. J. H. Jun : J. Kor. Soc. Heat Treat. 31 (2018) 231. https://doi.org/10.12656/JKSHT.2018.31.5.231
  14. A. Rudajevova, M. Stanek and P. Lukac : Mater. Sci. Eng. A 341 (2003) 152. https://doi.org/10.1016/S0921-5093(02)00233-2
  15. J. Leitner, P. Vonka, D. Sedmidubsky and P. Svoboda : Thermochim. Acta 497 (2010) 7. https://doi.org/10.1016/j.tca.2009.08.002
  16. A. Lindemann, J. Schmidt, M. Todte and T. Zeuner : Thermochim. Acta 382 (2002) 269. https://doi.org/10.1016/S0040-6031(01)00752-3
  17. S. I. Abu-Eishah, Y. Haddad, A. Solieman and A. Bajbouj : Latin American Appl. Res. 34 (2004) 257.
  18. K. N. Braszczynska-Malik : J. Alloy Compd. 477 (2009) 870. https://doi.org/10.1016/j.jallcom.2008.11.008
  19. D. Duly, Y. Brechet and B. Chenal : Acta Metall. 40 (1992) 2289. https://doi.org/10.1016/0956-7151(92)90147-7
  20. N. Ridley : Metall. Trans. A 15A (1984) 1019. https://doi.org/10.1007/BF02644694
  21. C. Zener : Trans. AIME 167 (1946) 550.
  22. S. I. Abu-Eishah : Int. J. Thermophys. 22 (2001) 1855. https://doi.org/10.1023/A:1013155404019
  23. F. P. Incropera and D. P. DeWitt : "Fundament als of Heat & Mass Transfer", 4th ed., John Wiley, NY, 1996.
  24. A. R. Eivani, H. Ahmed, J. Zhou and J. Duszczyk : Metall. Mater. Trans. A 40 (2009) 2435. https://doi.org/10.1007/s11661-009-9917-y
  25. C. Su, D. Li, T. Ying, L. Zhou, L. Li and X. Zeng : J. Allo Compd. 685 (2016) 114. https://doi.org/10.1016/j.jallcom.2016.05.261
  26. C. Wang, Z. Cui, H. Liu, Y. Chen, W. Ding and S. Xiao : Mater. Des. 84 (2015) 48. https://doi.org/10.1016/j.matdes.2015.06.110
  27. J. C. Slater : J. Chem. Phys. 41 (1964) 3199. https://doi.org/10.1063/1.1725697