Browse > Article
http://dx.doi.org/10.12656/jksht.2020.33.5.219

Tensile Properties and Thermal Conductivities of Mg-Al alloy with As-Cast and Discontinuous Precipitates Microstructures  

Jun, Joong-Hwan (Advanced Materials and Process R&D Department, Korea Institute of Industrial Technology)
Publication Information
Journal of the Korean Society for Heat Treatment / v.33, no.5, 2020 , pp. 219-225 More about this Journal
Abstract
The objective of this study was to investigate the tensile properties and thermal conductivities of Mg9.3%Al alloy in as-cast state and heat-treated state consisting of fully discontinuous precipitates (DPs), respectively. The fully DPs microstructure was obtained by solution treatment at 405℃ for 24 h, followed by furnace cooling to RT. The as-cast alloy showed a partially divorced eutectic β(Mg17Al12) phase particles formed along the α-(Mg) cell boundaries. The DPs had various apparent (α+β) interlamellar spacings, which is related to different transformation temperatures during the furnace cooling. The DPs microstructure exhibited better tensile strength than the as-cast one, resulting from the higher value of elongation in response to its more homogeneous microstructure. It is noticeable that the DPs microstructure had 12.4% higher thermal conductivity in average than the as-cast one between RT and 200℃. The XRD analyses revealed that the lower Al concentration in the α-(Mg) matrix may well be responsible for the better thermal conductivity of the DPs microstructure.
Keywords
Mg-Al; discontinuous precipitates; tensile properties; thermal conductivity; (${\alpha}+{\beta}$) lamellar microstructure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Zener : Trans. AIME 167 (1946) 550.
2 S. I. Abu-Eishah : Int. J. Thermophys. 22 (2001) 1855.   DOI
3 F. P. Incropera and D. P. DeWitt : "Fundament als of Heat & Mass Transfer", 4th ed., John Wiley, NY, 1996.
4 A. R. Eivani, H. Ahmed, J. Zhou and J. Duszczyk : Metall. Mater. Trans. A 40 (2009) 2435.   DOI
5 C. Su, D. Li, T. Ying, L. Zhou, L. Li and X. Zeng : J. Allo Compd. 685 (2016) 114.   DOI
6 C. Wang, Z. Cui, H. Liu, Y. Chen, W. Ding and S. Xiao : Mater. Des. 84 (2015) 48.   DOI
7 J. C. Slater : J. Chem. Phys. 41 (1964) 3199.   DOI
8 D. Duly, Y. Brechet and B. Chenal : Acta Metall. 40 (1992) 2289.   DOI
9 N. Ridley : Metall. Trans. A 15A (1984) 1019.   DOI
10 J. Song, J. She, D. Chen and F. Pan : J. Magnes. Alloy 8 (2020) 1.   DOI
11 H. Pan, F. Pan, R. Yang, J. Peng, C. Zhao, J. She, Z. Gao and A. Tang : J. Mater. Sci. 49 (2014) 3107.   DOI
12 S. Lee, H. J. Ham, S. Y. Kwon, S. W. Kim and C. M. Suh : Int. J. Thermophys. 34 (2013) 2343.   DOI
13 S. Li, X. Yang, J. Hou and W. Du : J. Magnes. Alloy 8 (2020) 78.   DOI
14 Y. Kumano, T. Ogura and T. Yamada : J. Electron. Packag. 131 (2009) 021007.   DOI
15 M. Cui, N. Chen, X. Yang, Y. Wang, Y. Bai and X. Zhang : J. Semicond. 30 (2009) 044011.   DOI
16 T. Ying, M. Y. Zheng, Z. T. Li and X. G. Qiao : J. Alloy Compd. 608 (2014) 19.   DOI
17 M. Li and S. J. Zinkle : Comprehensive Nucl. Mater. 4 (2012) 667.
18 T. Alam and A. H. Ansari : Int. J. Adv. Tech. Eng. Sci. 5 (2017) 278.
19 M. J. Donachie : "Titanium: A Technical Guide", 2nd ed., ASM International, Materials Park, OH, 2000.
20 J. Wilzer, F. Ludtke, S. Weber and W. Theisen : J. Mater. Sci. 48 (2013) 8483.   DOI
21 W. Zheng, S. Li, B. Tand and D. Zeng : China Found. 3 (2006 ) 270.
22 J. H. Jun : J. Kor. Soc. Heat Treat. 31 (2018) 231.   DOI
23 A. Rudajevova, M. Stanek and P. Lukac : Mater. Sci. Eng. A 341 (2003) 152.   DOI
24 J. Leitner, P. Vonka, D. Sedmidubsky and P. Svoboda : Thermochim. Acta 497 (2010) 7.   DOI
25 A. Lindemann, J. Schmidt, M. Todte and T. Zeuner : Thermochim. Acta 382 (2002) 269.   DOI
26 S. I. Abu-Eishah, Y. Haddad, A. Solieman and A. Bajbouj : Latin American Appl. Res. 34 (2004) 257.
27 K. N. Braszczynska-Malik : J. Alloy Compd. 477 (2009) 870.   DOI