DOI QR코드

DOI QR Code

A Comprehensive Study of SARS-CoV-2: From 2019-nCoV to COVID-19 Outbreak

  • Waris, Abdul (Department of Biotechnology, Quaid-i-Azam University) ;
  • Ali, Muhammad (Department of Biotechnology, Quaid-i-Azam University) ;
  • Khan, Atta Ullah (Department of Biotechnology, University of Malakand Chakdara) ;
  • Ali, Asmat (Centre for Human Genetics, Hazara University Mansehra) ;
  • Baset, Abdul (Department of Zoology, Bacha Khan University Charsadda)
  • Received : 2020.04.17
  • Accepted : 2020.07.23
  • Published : 2020.09.28

Abstract

The coronavirus disease 2019 (COVID-19) is a highly contagious pneumonia that has spread throughout the world. It is caused by a novel, single stranded RNA virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Genetic analysis revealed that, phylogenetically, the SARS-CoV-2 is related to severe acute respiratory syndrome-like viruses seen in bats. Because of this, bats are considered as a possible primary reservoir. The World Health Organization has declared the COVID-19 outbreak as a pandemic. As of May 27, 2020, more than 5,406,282 confirmed cases, and 343,562 confirmed deaths have been reported worldwide. Currently, there are no approved vaccines or antiviral drugs available against COVID-19. Newly developed vaccines are in the first stage of clinical trials, and it may take a few months to a few years for their commercialization. At present, remdesivir and chloroquine are the promising drugs for treating COVID-19 patients. In this review, we summarize the diversity, genetic variations, primary reservoirs, epidemiology, clinical manifestations, pathogenesis, diagnosis, treatment strategies, and future prospects with respect to controlling the spread of COVID-19.

Keywords

References

  1. Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. 2020. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J. Adv. Res. 24: 91-98. https://doi.org/10.1016/j.jare.2020.03.005
  2. Zhong NS, Zheng BJ, Li YM, Poon LLM, Xie ZH, Chan KH, et al. 2003. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003. Lancet 362: 1372-1358. https://doi.org/10.1016/S0140-6736(03)14630-2
  3. Wang N, Shi X, Jiang L, Zhang S, Wang D, Tong P, et al. 2013. Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res. 23: 986-993. https://doi.org/10.1038/cr.2013.92
  4. Waris A, Khan AU, Ali M, Ali A, Baset A. 2020. COVID-19 outbreak: current scenario of Pakistan. New Microbes New Infect. 35: 100681. https://doi.org/10.1016/j.nmni.2020.100681
  5. Cui J, Li F, Shi ZL. 2019. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17: 181-192. https://doi.org/10.1038/s41579-018-0118-9
  6. Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. 2020. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and corona virus disease-2019 (COVID-19): the epidemic and the challenges. Int. J. Antimicrob. Agents 55: 105924. https://doi.org/10.1016/j.ijantimicag.2020.105924
  7. Zhao S, Lin Q, Ran J, Musa SS, Yang G, Wang W, et al. 2020. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A datadriven analysis in the early phase of the outbreak. Int. J. Inf. Dis. 92: 214-217. https://doi.org/10.1016/j.ijid.2020.01.050
  8. Structure of SARS-CoV-2. Available from https://www.google.com/search?q=structure+of+SARS-CoV-2. Accessed June 30, 2020.
  9. Gorbalenya AE, Baker SC, Baric R, Groot RJD, Drosten C, Gulyaeva AA, et al. 2020. Severe acute respiratory syndrome-related coronavirus: The species and its viruses-a statement of the Coronavirus Study Group. BioRxiv. doi.org/10.1101/2020.02.07.937862.
  10. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. 2020. Early transmission dynamics in Wuhan, China, of novel coronavirus- infected pneumonia. N. Engl. J. Med. 382: 1199-1207. https://doi.org/10.1056/NEJMoa2001316
  11. Wang C, Horby PW, Hayden FG, Gao GF. 2020. A novel coronavirus outbreak of global health concern. Lancet 395: 470-473. https://doi.org/10.1016/S0140-6736(20)30185-9
  12. Wang J, Wang Z. 2020. Strengths, weaknesses, opportunities and threats (Swot) analysis of china's prevention and control strategy for the covid-19 epidemic. Int. J. Environ. Res. Pub. Health 17: 2235. https://doi.org/10.3390/ijerph17072235
  13. Ebrahim SH, Ahmed QA, Gozzer E, Schlagenhauf P, Memish ZA. 2020. Covid-19 and community mitigation strategies in a pandemic. BMJ 368: m1066.
  14. World Health organization. Coronavirus disease 9COVID-19) Pandemic. Available from https://www.who.int/emergencies/diseases/novel-coronavirus-2019. Accessed May 27, 2020.
  15. Tang XC, Zhang JX, Zhang SY, Wang P, Fan XH, Li LF, et al. 2006. Prevalence and genetic diversity of coronaviruses in bats from China. J. Virol. 80: 7481-7490. https://doi.org/10.1128/JVI.00697-06
  16. Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, et al. 2003. A novel coronavirus associated with severe acute respiratory syndrome. N. Eng. J. Med. 348: 1953-1966. https://doi.org/10.1056/NEJMoa030781
  17. Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX, Cheung CL, et al. 2003. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302: 276-278. https://doi.org/10.1126/science.1087139
  18. Guan Y, Field H, Smith GJ, Chen HL. 2005. SARS coronavirus: an animal reservoir. Severe acute respiratory syndrome. Blackwell Pub. 79-83.
  19. Kan B, Wang M, Jing H, Xu H, Jiang X, Yan M, et al. 2005. Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms. J. Virol. 79: 11892-11900. https://doi.org/10.1128/JVI.79.18.11892-11900.2005
  20. Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, et al. 2005. Bats are natural reservoirs of SARS-like coronaviruses. Science 310: 676-679. https://doi.org/10.1126/science.1118391
  21. Eaton BT. 2001. Introduction to current focus on Hendra and Nipah viruses. Microbes Infect. 3: 277-278. https://doi.org/10.1016/S1286-4579(01)01380-6
  22. Giwa AL, Desai A. 2020. Novel coronavirus COVID-19: an overview for emergency clinicians. Pediatr. Emerg. Med. Pract. 22: 1-21.
  23. Tang XC, Zhang JX, Zhang SY, Wang P, Fan XH, Li LF, et al. 2006. Prevalence and genetic diversity of coronaviruses in bats from China. J. Virol. 80: 7481-7490. https://doi.org/10.1128/JVI.00697-06
  24. Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al. 2020. First case of 2019 novel coronavirus in the United States. N. Eng. J. Med. 382: 929-936. https://doi.org/10.1056/NEJMoa2001191
  25. Zhou D, Zhang P, Bao C, Zhang Y, Zhu N. 2020. Emerging understanding of etiology and epidemiology of the novel coronavirus (COVID-19) infection in Wuhan, China. doi: 10.20944/preprints202002.
  26. Kraay AN, Hayashi MA, Hernandez-Ceron N, Spicknall IH, Eisenberg MC, Meza R, et al. 2018. Fomite-mediated transmission as a sufficient pathway: a comparative analysis across three viral pathogens. BMC Infect. Dis. 18: 540. https://doi.org/10.1186/s12879-018-3425-x
  27. Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W, et al. 2020. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet 395: 809-815. https://doi.org/10.1016/S0140-6736(20)30360-3
  28. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. 2020. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. BioRxiv. 914952.
  29. Graham RL, Baric RS. 2010. Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission. J. Virol. 84: 3134-3146. https://doi.org/10.1128/JVI.01394-09
  30. Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, et al. 2005. Bats are natural reservoirs of SARS-like coronaviruses. Science 310: 676-679. https://doi.org/10.1126/science.1118391
  31. Wilson DE, Reeder DM. 2005. Mammal species of the world: a taxonomic and geographic reference. JHU Press. 1.
  32. Chu DKW, Poon LLM, Chan KH, Chen H, Guan Y, Yuen KY, et al. 2006. Coronaviruses in bent-winged bats (Miniopterus spp.). J. Gen. Virol. 87: 2461-2466. https://doi.org/10.1099/vir.0.82203-0
  33. Page RD. 1994. Parallel phylogenies: reconstructing the history of host-parasite assemblages. Cladistics 10: 155-173. https://doi.org/10.1111/j.1096-0031.1994.tb00170.x
  34. Cui J, Ha N, Streicker D, Li G, Tang X, Shi Z, et al. 2007. Evolutionary relationships between bat coronaviruses and their hosts. Emerg. Infect. Dis. 13: 1526-1532. https://doi.org/10.3201/eid1310.070448
  35. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. 2020. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. BioRxiv. 914952.
  36. Lv L, Li G, Chen J, Liang X, Li Y. 2020. Comparative genomic analysis revealed specific mutation pattern between human coronavirus SARS-CoV-2 and Bat-SARSr-CoV RaTG13. BioRxiv.
  37. Zhang T, Wu Q, Zhang Z. 2020. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr. Biol. 30: 1578. https://doi.org/10.1016/j.cub.2020.03.063
  38. Sabino-Silva R, Jardim ACG, Siqueira WL. 2020. Coronavirus COVID-19 impacts to dentistry and potential salivary diagnosis. Clin. Oral Invesig. 24: 1619-1621. https://doi.org/10.1007/s00784-020-03248-x
  39. Wu Z, McGoogan JM. 2020. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA 323: 1239-1242. https://doi.org/10.1001/jama.2020.2648
  40. Liu W, Li H. 2020. COVID-19 Disease: ORF8 and surface glycoprotein inhibit heme metabolism by binding to porphyrin. Chemrvix. Org. 1-23.
  41. Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, et al. 2020. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak-an update on the status. Mil. Med. Res. 7: 11. https://doi.org/10.1186/s40779-020-00240-0
  42. Lipsitch M, Swerdlow DL, Finelli L. 2020. Defining the epidemiology of Covid-19-studies needed. N. Eng. J. Med. 382: 1194-1196. https://doi.org/10.1056/NEJMp2002125
  43. Wu P, Hao X, Lau EH, Wong JY, Leung KS, Wu JT, et al. 2020. Realtime tentative assessment of the epidemiological characteristics of novel coronavirus infections in Wuhan, China, as at 22 January 2020. Euro Surveill. 25: 2000044.
  44. Kim H. 2020. Outbreak of novel coronavirus (COVID-19): What is the role of radiologists? Eur. Radiol. 30: 3266-3267. https://doi.org/10.1007/s00330-020-06748-2
  45. Novel CPERE. 2020. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. CCDC Weekly. 2: 1-5. https://doi.org/10.46234/ccdcw2020.001
  46. Chang D, Xu H, Rebaza A, Sharma L, Cruz CSD. 2020. Protecting health-care workers from subclinical coronavirus infection. Lancet Respir. Med. 8: e13. https://doi.org/10.1016/S2213-2600(20)30066-7
  47. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. 2020. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395: 507-513. https://doi.org/10.1016/S0140-6736(20)30211-7
  48. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. 2020. Clinical characteristics of 2019 novel coronavirus infection in China. N. Engl. J. Med. 382: 1708-1720. https://doi.org/10.1056/NEJMoa2002032
  49. Liu J, Liu Y, Xiang P, Pu L, Xiong H, Li C, et al. 2020. Neutrophil-tolymphocyte ratio predicts severe illness patients with 2019 novel coronavirus in the early stage. J. Transl. Med. 18: 206. https://doi.org/10.1186/s12967-020-02374-0
  50. Jiang F, Deng L, Zhang L, Cai Y, Cheung CW, Xia Z. 2020. Review of the clinical characteristics of coronavirus disease 2019 (COVID-19). J. Gen. Intern. Med. 45: 1545-1549.
  51. Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. 2020. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and corona virus disease-2019 (COVID-19): the epidemic and the challenges. Int. J. Antimicrob. Agents 55: 105924. https://doi.org/10.1016/j.ijantimicag.2020.105924
  52. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, et al. 2020. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 25: 2000045.
  53. Wang W, Tang J, Wei F. 2020. Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China. J. Med. Virol. 92: 441-447. https://doi.org/10.1002/jmv.25689
  54. Peiris JSM, Guan Y, Yuen KY. 2004. Severe acute respiratory syndrome. Nat. Med. 10: S88-S97. https://doi.org/10.1038/nm1143
  55. De Wit E, Van Doremalen N, Falzarano D, Munster VJ. 2016. SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 14: 523-534. https://doi.org/10.1038/nrmicro.2016.81
  56. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. 2003. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426: 450-454. https://doi.org/10.1038/nature02145
  57. Li X, Geng M, Peng Y, Meng L, Lu S. 2020. Molecular immune pathogenesis and diagnosis of COVID-19. J. Pharma. Anal. 10: 102-108. https://doi.org/10.1016/j.jpha.2020.03.001
  58. Belouzard S, Chu VC, Whittaker GR. 2009. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc. Natl. Acad. Sci. USA 106: 5871-5876. https://doi.org/10.1073/pnas.0809524106
  59. Millet JK, Whittaker GR. 2014. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc. Natl. Acad. Sci. USA 111: 15214-15219. https://doi.org/10.1073/pnas.1407087111
  60. Wang H, Yang P, Liu K, Guo F, Zhang Y, Zhang G, et al. 2008. SARS coronavirus entry into host cells through a novel clathrinand caveolae-independent endocytic pathway. Cell Res. 18: 290-301. https://doi.org/10.1038/cr.2008.15
  61. Barth H, Liang TJ, Blum HE, Baumert TF. 2004. Novel vaccine strategies. Symposium. 30: 214-228.
  62. Zheng B, Du L, Zhao G, Lin Y, Sui H, Chan CS, et al. 2010. SARSCoV S protein induces strong mucosal immune responses and provides long-term protection against SARS-CoV infection. Cell Bio. Int. 1: 25-28.
  63. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395: 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5
  64. Liu J, Li S, Liu J, Liang B, Wang X, Wang H, et al. 2020. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine 55: 102763. https://doi.org/10.1016/j.ebiom.2020.102763
  65. Meduri GU, Kohler G, Headley S, Tolley E, Stentz F, Tolley E, et al. 1995. Inflammatory cytokines in the BAL of patients with ARDS: persistent elevation over time predicts poor outcome. Chest 108: 1303-1314. https://doi.org/10.1378/chest.108.5.1303
  66. Goodman RB, Strieter RM, Martin DP, Steinberg KP, Milberg JA, Maunder RJ, et al. 1996. Inflammatory cytokines in patients with persistence of the acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 154: 602-611. https://doi.org/10.1164/ajrccm.154.3.8810593
  67. Zenewicz LA. 2018. IL-22: there is a gap in our knowledge. ImmunoHorizons 2: 198-207. https://doi.org/10.4049/immunohorizons.1800006
  68. Wu D, Yang XO. 2020. TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib. J. Microbiol. Immunol. Infect. 53: 368-370. https://doi.org/10.1016/j.jmii.2020.03.005
  69. Li F. 2015. Receptor recognition mechanisms of coronaviruses: a decade of structural studies. J. Virol. 89: 1954-1964. https://doi.org/10.1128/JVI.02615-14
  70. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. 2020. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181: 281-292. https://doi.org/10.1016/j.cell.2020.02.058
  71. Hoffmann M, Kleine Weber H, Kruger N, Mueller MA, Drosten C, Pohlmann S. 2020. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. BioRxiv. 1-5.
  72. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. 2020. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367: 1260-1263. https://doi.org/10.1126/science.abb2507
  73. Zou X, Chen K, Zou J, Han P, Hao J, Han Z. 2020. Single-cell RNAseq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front. Med. 14: 185-192. https://doi.org/10.1007/s11684-020-0754-0
  74. Fang Y, Zhang H, Xie J, Lin M, Ying L, Pang P, Ji W. 2020. Sensitivity of chest CT for COVID-19: comparison to RT-PCR. Radiology 296: E115-E117. https://doi.org/10.1148/radiol.2020200432
  75. Pan F, Ye T, Sun P, Gui S, Liang B, Li L, et al. 2020. Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID-19) pneumonia. Radiology 295: 200370.
  76. Wang Y, Kang H, Liu X, Tong Z. 2020. Combination of RT-qPCR testing and clinical features for diagnosis of COVID-19 facilitates management of SARS-CoV-2 outbreak. J. Med. Virol. 92: 538-539. https://doi.org/10.1002/jmv.25721
  77. Chu DK, Pan Y, Cheng SM, Hui KP, Krishnan P, Liu Y, et al. 2020. Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clin. Chem. 66: 549-555. https://doi.org/10.1093/clinchem/hvaa029
  78. Pan Y, Guan H, Zhou S, Wang Y, Li Q, Zhu T, et al. 2020. Initial CT findings and temporal changes in patients with the novel coronavirus pneumonia (2019-nCoV): a study of 63 patients in Wuhan, China. Eur. Radiol. 30: 3306-3309. https://doi.org/10.1007/s00330-020-06731-x
  79. Shi H, Han X, Zheng C. 2020. Evolution of CT manifestations in a patient recovered from 2019 novel coronavirus (2019-nCoV) pneumonia in Wuhan, China. Radiology 295: 20. https://doi.org/10.1148/radiol.2020200269
  80. Chung M, Bernheim A, Mei X, Zhang N, Huang M, Zeng X, et al. 2020. CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology 295: 202-207. https://doi.org/10.1148/radiol.2020200230
  81. Zhao R, Li M, Song H, Chen J, Ren W, Feng Y. 2020. Serological diagnostic kit of SARS-CoV-2 antibodies using CHO-expressed full-length SARS-CoV-2 S1 proteins. medRxiv. 1-11.
  82. Waris A, Ali M, Khan AU, Ali A, Baset A. 2020. Role of nanotechnology in diagnosing and treating COVID-19 during the Pandemic. Intl' J. Clin. Virol. 4: 65-70. https://doi.org/10.29328/journal.ijcv.1001017
  83. Pan Y, Li X, Yang G, Fan J, Tang Y, Zhao J, et al. 2020. Serological immunochromatographic approach in diagnosis with SARSCoV- 2 infected COVID-19 patients. J. Inf. 81: 28-32.
  84. Tang Y-W, Schmitz JE, Persing DH, Stratton CW. 2020. Laboratory diagnosis of COVID-19: current issues and challenges. J. Clin. Microbiol. 58: 512-520.
  85. Yong SEF, Anderson DE, Wei WE, Pang J, Chia WN, Chia WN, et al. 2020. Connecting clusters of COVID-19: an epidemiological and serological investigation. Lancet Inf. Dis. 20: 809-815. https://doi.org/10.1016/S1473-3099(20)30273-5
  86. Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, et al. 2020. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak-an update on the status. Mil. Med. Res. 7: 11. https://doi.org/10.1186/s40779-020-00240-0
  87. Bhatraju PK, Ghassemieh BJ, Nichols M, Kim R, Jerome KR, Nalla AK, et al. 2020. Covid-19 in critically ill patients in the Seattle region-case series. N. Eng. J. Med. 382: 2012-2022. https://doi.org/10.1056/NEJMoa2004500
  88. Devaux CA, Rolain JM, Colson P, Raoult D. 2020. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19?. Int. J. Antimicrob. Agents. 55: 105938. https://doi.org/10.1016/j.ijantimicag.2020.105938
  89. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. 2020. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 30: 269-271. https://doi.org/10.1038/s41422-020-0282-0
  90. Boriskin YS, Leneva IA, Pecheur EI, Polyak SJ, Arbidol. 2008. A broad-spectrum antiviral compound that blocks viral fusion. Curr. Med. Chem.15: 997-1005. https://doi.org/10.2174/092986708784049658
  91. Wu R, Wang L, Kuo HC, Shannar A, Peter R, Chou PJ, et al. 2020. An update on current therapeutic drugs treating COVID-19. Curr. Pharm. Rep. 11: 1.
  92. Sheahan TP, Sims AC, Leist SR, Schafer A, Won J, Brown AJ, et al. 2020. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERSCoV. Nat. Com. 11: 1-4. https://doi.org/10.1007/s11047-011-9283-8
  93. Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, et al. 2020. Remdesivir in adults with severe COVID-19: a randomised, doubleblind, placebo-controlled, multicentre trial. Lancet 395: 1569-1578. https://doi.org/10.1016/S0140-6736(20)31022-9
  94. Tao YY, Tang LV, Hu Y. 2020. Treatments in the COVID-19 pandemic: an update on clinical trials. Expert Opin. Emerg. Drug. 25: 81-88. https://doi.org/10.1080/14728214.2020.1773431
  95. Owens B. 2020. Excitement around hydroxychloroquine for treating COVID-19 causes challenges for rheumatology. The Lancet Rheum. 2: e257. https://doi.org/10.1016/S2665-9913(20)30089-8
  96. Singh AK, Singh A, Shaikh A, Singh R, Misra A. 2020. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes & Metabolic Syndrome: Clin. Res. Rev. 14: 241-246. https://doi.org/10.1016/j.dsx.2020.03.011
  97. Jha AK, Kumar R, Goenka MK, Dayal VM. 2020. Emerging treatment and prevention strategies against COVID-19: a brief update. J. Dig. Endos. 11: 69-72. https://doi.org/10.1055/s-0040-1712547
  98. Gao J, Tian Z, Yang X. 2020. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Tren. 14: 72-73. https://doi.org/10.5582/bst.2020.01047
  99. Szekely Y, Lichter Y, Shrkihe BA, Bruck H, Oster HS, Viskin S. 2020. Chloroquine-induced torsade de pointes in a COVID-19 patient. Heart Rhythm. 17: 1-4. https://doi.org/10.1016/j.hrthm.2019.11.008
  100. Wu Z, McGoogan JM. 2020. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA 323: 1239-1242. https://doi.org/10.1001/jama.2020.2648
  101. Wu J, Liu J, Zhao X, Liu C, Wang W, Wang D, et al. 2020. Clinical characteristics of imported cases of COVID-19 in Jiangsu province: a multicenter descriptive study. Clin. Inf. Dis. 71: 706-712. https://doi.org/10.1093/cid/ciaa199
  102. Luo H, Tang QL, Shang YX, Liang SB, Yang M, Robinson N, et al. 2020. Can Chinese medicine be used for prevention of corona virus disease 2019 (COVID-19)? A review of historical classics, research evidence and current prevention programs. Chin. J. Integr. Med. 26: 243-250. https://doi.org/10.1007/s11655-020-3192-6
  103. Pang J, Wang MX, Ang IY, Tan SH, Lewis RF, Chen JIP, et al. 2020. Potential rapid diagnostics, vaccine and therapeutics for 2019 novel Coronavirus (2019-ncoV): a systematic review. J. Clin. Med. 9: 623. https://doi.org/10.3390/jcm9030623
  104. Casadevall A, Pirofski LA. 2015. The Ebola epidemic crystallizes the potential of passive antibody therapy for infectious diseases. PLoS Pathog. 11: e1004717. https://doi.org/10.1371/journal.ppat.1004717
  105. Milken Institute, 2020. COVID-19 treatment and vaccine Tracker. Available from https://covid-19tracker.milkeninstitute.org/. Accessed July 4, 2020.
  106. AstraZeneca. COVID-19 information hub. Available from https://www.astrazeneca.com/media-centre/articles/2020/astrazenecato-supply-europe-with-up-to-400-million-doses-of-oxford-universitys-potential-covid-19-vaccine.html . Accessed July 4, 2020.
  107. Academic and Scientific Cooperation Project of Turkey (TABIP). 2020. Coronavirus (Covid-19) Vaccine Latest Update. Available from https://covid19.tabipacademy.com/2020/07/02/coronavirus-covid-19-vaccine-status-check-oxford-vaccine-most-advancedsays-who-sanofi-accelerates-trials. Accessed July 4, 2020.
  108. Moderna. Moderna Advances Late-Stage Development of its Vaccine (mRNA-1273) Against COVID-19. Available from https://investors.modernatx.com/news-releases/news-release-details/moderna-advances-late-stage-development-its-vaccine-mrna-1273. Accessed July 4, 2020.
  109. Mullard A. 2020. COVID-19 vaccine development pipeline gears up. Lancet 395: 1751-1752. https://doi.org/10.1016/S0140-6736(20)31252-6
  110. Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. 2020. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and corona virus disease-2019 (COVID-19): the epidemic and the challenges. International journal of antimicrobial agents. Int. J. Antimicrob. Agents 55: 105924. https://doi.org/10.1016/j.ijantimicag.2020.105924
  111. Lai MM. 1996. Recombination in large RNA viruses: coronaviruses. Virol. 7: 381-388.
  112. Lai CC, Liu YH, Wang CY, Wang YH, Hsueh SC, Yen MY, et al. 2020. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARSCoV-2): Facts and myths. J. Microbiol. Immunol. Infect. 53: 404-412. https://doi.org/10.1016/j.jmii.2020.02.012