DOI QR코드

DOI QR Code

열처리를 통한 Si 고용 및 석출 반응이 Al-Si 합금의 열확산도에 미치는 영향

Effect of Precipitation and Dissolution of Si on the Thermal Diffusivity in the Al-Si Alloy System

  • 투고 : 2020.07.09
  • 심사 : 2020.08.13
  • 발행 : 2020.09.27

초록

The effect of precipitation and dissolution of Si on the thermal diffusivity in the Al-Si alloy system is reported in this study and solution heat treatment followed by aging treatment is carried out to determine the effects of heat treatment on the thermal characteristics. The solution treatment is performed at 535 ℃ for 4 and 10 h and then the specimens are cooled by rapid quenching. The samples are aged at 300 ℃ for 4 h to precipitate Si solute. The addition of 9 wt% silicon contents makes the thermal diffusivity decrease from 78 to 74 mm/s2 in the cases of solid solution treated and quenched samples. After quenching and aging, the Si solute precipitates on the Al matrix and increases the thermal diffusivity compared with that after the quenched state. In particular, the increase of the thermal diffusivity is equal to 10 mm/s2 without relation to the Si contents in the Al-Si alloy, which seems to corresponded to solute amount of Si 1 wt% in the Al matrix.

키워드

참고문헌

  1. T. M. Tritt, Thermal Conductivity: Theory, Properties and Applications, p.21, 1st ed. Kluwer Academic/Plemum publishers, USA (2004).
  2. J. R. Davis, Aluminum and Aluminum Alloys, p.320-368, 1st ed, ASM international, USA (2006).
  3. L. F. Mondolfo, Aluminum Alloys: Structure and Properties, p.56-63, 1st ed, Elsevier, Butterworth, UK (2013).
  4. G. E. Totten and D. S. MacKenzie, Handbook of Aluminum, Vol. 1: Physical Metallurgy and Processes, p.81-114, 1st ed, Marcel Dekker inc., USA (2003).
  5. V. S. Zolotorevsky, N. A. Belov and M. V. Glazoff, Casting Aluminum Alloys: Their physical and mechanical metal lurgy, p.313-414, Elselvier, Butterworth-Heine mann, UK (2007).
  6. R. X. Li, R. D. Li, Y. H. Zhao, L. Z. He, C. X. Li, H. R. Guan and Z. Q. Hu, Mater. Lett., 58, 2096 (2004). https://doi.org/10.1016/j.matlet.2003.12.027
  7. J. R. Davis, Aluminum and Aluminum Alloys, p.200-240, The Materials Information Society, USA (2001).
  8. J. L. Murray and A. J. McAlister, Bull. Alloy Phase Diagrams, 5, 74 (1984). https://doi.org/10.1007/BF02868729
  9. P. Schumacher, S. Pogatscher, M. J. Starink, C. Schick, V. Mohles and B. Milkereit, Thermochim. Acta, 602, 63 (2015). https://doi.org/10.1016/j.tca.2014.12.023
  10. F. Lasagni, M. Dumont, C. Salamida, J. A. Acuna and H. P. Degischer, Int. J. Mater. Res., 100, 1005 (2009). https://doi.org/10.3139/146.110145
  11. S. K. Son, M. Takeda, M. Mitome, Y. Bando and T. Endo, Mater. Lett., 59, 629 (2005). https://doi.org/10.1016/j.matlet.2004.10.058
  12. N. Haghdadi, A. Zarei-Hanzaki, H. R. Abedi and O. Sabokpa, Mater. Sci. Eng., A, 549, 93 (2012). https://doi.org/10.1016/j.msea.2012.04.010
  13. S.-W. Choi, Y.-M. Kim and Y.-C. Kim, J. Alloys Compd., 775, 132 (2019). https://doi.org/10.1016/j.jallcom.2018.10.068
  14. Y. M. Kim, S. W. Choi and S. K. Hong, J. Alloys Compd., 687, 54 (2016). https://doi.org/10.1016/j.jallcom.2016.06.080
  15. J. Buha, R. N. Lumley, A. G. Crosky and K. Hono, Acta Mater., 55, 3015 (2007). https://doi.org/10.1016/j.actamat.2007.01.006
  16. L. C. Doan, K. Nakai, Y. Matsuura, S. Kobayashi and Y. Ohmor, Mater. Trans., 43, 1371 (2002). https://doi.org/10.2320/matertrans.43.1371