DOI QR코드

DOI QR Code

Protective effects of extracts from six local strains of Pyropia yezoensis against oxidative damage in vitro and in zebrafish model

  • Dai, Yu-Lin (Jilin Ginseng Academy, Changchun University of Chinese Medicine) ;
  • Kim, Gwang Hoon (Department of Biology, Kongju National University) ;
  • Kang, Min-Cheol (Research group of Food Processing, Research Division of Strategic Food Technology, Korea Food Research Institute (KFRI)) ;
  • Jeon, You-Jin (Department of Marine Life Science, Jeju National University)
  • Received : 2019.10.30
  • Accepted : 2020.05.14
  • Published : 2020.06.15

Abstract

Pyropia yezoensis has been used as functional food in East Asia, especially in Korea and Japan, for more than five hundred years. This study aims to evaluate the antioxidant effect of polyphenols and proteins-rich extracts from P. yezoensis (PPPs) against 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH)-induced oxidative cell damage. Among six Korean local strains obtained from Jinhae (JiH), Haenam (HN), Jangheung (JaH), Jindo (JD), Wando (WD), and Sinan (SA) areas, the extracts of P. yezoensis from SA and JD are relatively higher in polyphenols and proteins contents. SA showed the lowest IC50 scavenging activities against 1,1-diphenyl-2-picryl-hydrazyl and alkyl radicals and displayed protective effects against reactive oxygen species (ROS) in AAPH-induced Vero cells. Especially, the PPPs extracts from SA and JD showed protective activities against AAPH-induced apoptosis, as observed by nuclear staining with Hoechst 33342. Furthermore, in vivo studies of the SA extract in zebrafish showed significantly reduced ROS generation, lipid peroxidation, and cell damage. This is the first study, to our knowledge, to evaluate the antioxidant bioactivity of PPP in the Korean Peninsula using a zebrafish model. Due to SA and JD both located in the west coast of Korea, we deduced that the chemical content of the different PPP extracts was mildly influenced by their geographic location, and this alga has potential of protective activity against AAPH-induced ROS both in vitro and in vivo.

Keywords

References

  1. Ammerman, N. C., Beie-Sexton, M. & Azad, A. F. 2008. Growth and maintenance of Vero cell lines. Curr. Protoc. Microbiol. 11:A.4E.1-A.4E.7.
  2. Aoki, Y. & Kamei, Y. 2006. Preparation of recombinant polysaccharide-degrading enzymes from the marine bacterium, Pseudomonas sp. ND137 for the production of protoplasts of Porphyra yezoensis. Eur. J. Phycol. 41:321-328. https://doi.org/10.1080/09670260600801682
  3. Chandler, S. F. & Dodds, J. H. 1983. The effect of phosphate, nitrogen and sucrose on the production of phenolics and solasodine in callus cultures of Solanum laciniatum. Plant Cell Rep. 2:205-208. https://doi.org/10.1007/BF00270105
  4. Choi, J. -W., Kim, I. -H., Kim, Y. -M., Lee, M. -K. & Nam, T. -J. 2016. Pyropia yezoensis glycoprotein regulates antioxidant status and prevents hepatotoxicity in a rat model of D-galactosamine/lipopolysaccharide-induced acute liver failure. Mol. Med. Rep. 13:3110-3114. https://doi.org/10.3892/mmr.2016.4932
  5. Choudhury, F. K., Rivero, R. M., Blumwald, E. & Mittler, R. 2017. Reactive oxygen species, abiotic stress and stress combination. Plant J. 90:856-867. https://doi.org/10.1111/tpj.13299
  6. Cian, R. E., Alaiz, M., Vioque, J. & Drago, S. R. 2013. Enzyme proteolysis enhanced extraction of ACE inhibitory and antioxidant compounds (peptides and polyphenols) from Porphyra columbina residual cake. J. Appl. Phycol. 25:1197-1206. https://doi.org/10.1007/s10811-012-9913-2
  7. Cian, R. E., Garzon, A. G., Ancona, D. B., Guerrero, L. C. & Drago, S. R. 2015. Hydrolyzates from Pyropia columbina seaweed have antiplatelet aggregation, antioxidant and ACE I inhibitory peptides which maintain bioactivity after simulated gastrointestinal digestion. LWT-Food Sci. Technol. 64:881-888. https://doi.org/10.1016/j.lwt.2015.06.043
  8. Dai, Y. -L., Jiang, Y. -F., Lee, H. G., Jeon, Y. -J. & Kang, M. -C. 2019. Characterization and screening of anti-tumor activity of fucoidan from acid-processed hijiki (Hizikia fusiforme). Int. J. Biol. Macromol. 139:170-180. https://doi.org/10.1016/j.ijbiomac.2019.07.119
  9. Dai, Y. -L., Jiang, Y. -F., Lu, Y. -A., Kang, M. -C. & Jeon, Y. -J. 2020a. Fucoidan from acid-processed Hizikia fusiforme attenuates oxidative damage and regulate apoptosis. Int. J. Biol. Macromol. https://doi.org/10.1016/j. ijbiomac.2020.05.143.
  10. Dai, Y. -L., Kim, E. -A., Luo, H. -M., Jiang, Y. -F., Oh, J. -Y., Heo, S. -J. & Jeon, Y. -J. 2020b. Characterization and anti-tumor activity of saponin-rich fractions of South Korean sea cucumbers (Apostichopus japonicus). J. Food Sci. Technol. 57:2283-2292. https://doi.org/10.1007/s13197-020-04266-z
  11. Diebold, L. & Chandel, N. S. 2016. Mitochondrial ROS regulation of proliferating cells. Free Radic. Biol. Med. 100:86-93. https://doi.org/10.1016/j.freeradbiomed.2016.04.198
  12. Ding, Y., Kim, S. H., Lee, J. J., Hong, J. T., Kim, E. A., Kang, D. H., Heo, S. J. & Lee, S. H. 2019. Anti-melanogenesis activity of Ecklonia cava extract cultured in tanks with magma seawater of Jeju Island. Algae 34:177-185. https://doi.org/10.4490/algae.2019.34.4.30
  13. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350-356. https://doi.org/10.1021/ac60111a017
  14. Fraga, C. G., Galleano, M., Verstraeten, S. V. & Oteiza, P. I. 2010. Basic biochemical mechanisms behind the health benefits of polyphenols. Mol. Aspects Med. 31:435-445. https://doi.org/10.1016/j.mam.2010.09.006
  15. Hamann, M. T. 2007. The manzamines as an example of the unique structural classes available for the discovery and optimization of infectious disease controls based on marine natural products. Curr. Pharm. Design 13:653-660. https://doi.org/10.2174/138161207780162818
  16. Hiramoto, K., Johkoh, H., Sako, K. -I. & Kikugawa, K. 1993. DNA breaking activity of the carbon-centered radical generated from 2,2′-azobis (2-amidinopropane) hydrochloride (AAPH). Free Radic. Res. Commun. 19:323-332. https://doi.org/10.3109/10715769309056521
  17. Horwitz, W. 1975. Official methods of analysis. Association of Official Analytical Chemists, Washington, DC, 1094 pp.
  18. Howe, K., Clark, M. D., Torroja, C. F., Torrance, J., Berthelot, C., Muffato, M., Collins, J. E., Humphray, S., McLaren, K., Matthews, L., McLaren, S., Sealy, I., Caccamo, M., Churcher, C., Scott, C., Barrett, J. C., Koch, R., Rauch, G. -J., White, S., Chow, W., Kilian, B., Quintais, L. T., Guerra-Assuncao, J. A., Zhou, Y., Gu, Y., Yen, J., Vogel, J. -H., Eyre, T., Redmond, S., Banerjee, R., Chi, J., Fu, B., Langley, E., Maguire, S. F., Laird, G. K., Lloyd, D., Kenyon, E., Donaldson, S., Sehra, H., Almeida-King, J., Loveland, J., Trevanion, S., Jones, M., Quail, M., Willey, D., Hunt, A., Burton, J., Sims, S., McLay, K., Plumb, B., Davis, J., Clee, C., Oliver, K., Clark, R., Riddle, C., Elliot, D., Threadgold, G., Harden, G., Ware, D., Begum, S., Mortimore, B., Kerry, G., Heath, P., Phillimore, B., Tracey, A., Corby, N., Dunn, M., Johnson, C., Wood, J., Clark, S., Pelan, S., Griffiths, G., Smith, M., Glithero, R., Howden, P., Barker, N., Lloyd, C., Stevens, C., Harley, J., Holt, K., Panagiotidis, G., Lovell, J., Beasley, H., Henderson, C., Gordon, D., Auger, K., Wright, D., Collins, J., Raisen, C., Dyer, L., Leung, K., Robertson, L., Ambridge, K., Leongamornlert, D., McGuire, S., Gilderthorp, R., Griffiths, C., Manthravadi, D., Nichol, S., Barker, G., Whitehead, S., Kay, M., Brown, J., Murnane, C., Gray, E., Humphries, M., Sycamore, N., Barker, D., Saunders, D., Wallis, J., Babbage, A., Hammond, S., Mashreghi-Mohammadi, M., Barr, L., Martin, S., Wray, P., Ellington, A., Matthews, N., Ellwood, M., Woodmansey, R., Clark, G., Cooper, J. D., Tromans, A., Grafham, D., Skuce, C., Pandian, R., Andrews, R., Harrison, E., Kimberley, A., Garnett, J., Fosker, N., Hall, R., Garner, P., Kelly, D., Bird, C., Palmer, S., Gehring, I., Berger, A., Dooley, C. M., Ersan-Urun, Z., Eser, C., Geiger, H., Geisler, M., Karotki, L., Kirn, A., Konantz, J., Konantz, M., Oberlander, M., Rudolph-Geiger, S., Teucke, M., Lanz, C., Raddatz, G., Osoegawa, K., Zhu, B., Rapp, A., Widaa, S., Langford, C., Yang, F., Schuster, S. C., Carter, N. P., Harrow, J., Ning, Z., Herrero, J., Searle, S. M. J., Enright, A., Geisler, R., Plasterk, R. H. A., Lee, C., Westerfield, M., de Jong, P. J., Zon, L. I., Postlethwait, J. H., Nusslein-Volhard, C., Hubbard, T. J. P., Crollius, H. R., Rogers, J. & Stemple, D. L. 2013. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498-503. https://doi.org/10.1038/nature12111
  19. Hwang, I. K., Kim, S. O., Hwang, M. S., Park, E. J., Ha, D. S., Lee, S. R., Hwang, I. K., Kim, S. O., Hwang, M. S., Park, E. J. & Ha, D. S. 2018. Intraspecific variation of gene structure in the mitochondrial large subunit ribosomal RNA and cytochrome c oxidase subunit 1 of Pyropia yezoensis (Bangiales, Rhodophyta). Algae 33:49-54. https://doi.org/10.4490/algae.2018.33.2.20
  20. Hwang, J. -H., Oh, Y. -S. & Lim, S. -B. 2014. Anti-inflammatory activities of some brown marine algae in LPS-stimulated RAW 264.7 cells. Food Sci. Biotechnol. 23:865-871. https://doi.org/10.1007/s10068-014-0116-2
  21. Kang, M. -C., Kim, E. -A., Kang, S. -M., Wijesinghe, W. A. J. P., Yang, X., Kang, N. & Jeon, Y. -J. 2012. Thermostability of a marine polyphenolic antioxidant dieckol, derived from the brown seaweed Ecklonia cava. Algae 27:205-213. https://doi.org/10.4490/algae.2012.27.3.205
  22. Kazlowska, K., Lin, H. -T. V., Chang, S. -H. & Tsai, G. -J. 2013. In vitro and in vivo anticancer effects of sterol fraction from red algae Porphyra dentata. Evid. Based Complement. Alternat. Med. 2013:493869.
  23. Kim, E. -A., Lee, S. -H., Ko, C. -I., Cha, S. -H., Kang, M. -C., Kang, S. -M., Ko, S. -C., Lee, W. -W., Ko, J. -Y., Lee, J. -H., Kang, N., Oh, J. -Y., Ahn, G., Jee, Y. H. & Jeon, Y. -J. 2014a. Protective effect of fucoidan against AAPH-induced oxidative stress in zebrafish model. Carbohydr. Polym. 102:185-191. https://doi.org/10.1016/j.carbpol.2013.11.022
  24. Kim, G. H., Moon, K. -H., Kim, J. -Y., Shim, J. & Klochkova, T. A. 2014b. A revaluation of algal diseases in Korean Pyropia (Porphyra) sea farms and their economic impact. Algae 29:249-265. https://doi.org/10.4490/algae.2014.29.4.249
  25. Kim, H. -S., Sanjeewa, K. K., Fernando, I. P. S., Ryu, B., Yang, H. -W., Ahn, G., Kang, M. C., Heo, S. -J., Je, J. -G. & Jeon, Y. -J. 2018a. A comparative study of Sargassum horneri Korea and China strains collected along the coast of Jeju Island South Korea: its components and bioactive properties. Algae 33:341-349. https://doi.org/10.4490/algae.2018.33.11.15
  26. Kim, J., Yoon, M., Yang, H., Jo, J., Han, D., Jeon, Y. -J. & Cho, S. 2014c. Enrichment and purification of marine polyphenol phlorotannins using macroporous adsorption resins. Food Chem. 162:135-142. https://doi.org/10.1016/j.foodchem.2014.04.035
  27. Kim, S. -M., Choi, H. -G., Hwang, M. -S. & Kim, H. -S. 2018b. Biogeographic pattern of four endemic Pyropia from the east coast of Korea, including a new species, Pyropia retorta (Bangiaceae, Rhodophyta). Algae 33:55-68. https://doi.org/10.4490/algae.2018.33.2.26
  28. Kim, S. -Y., Kim, E. -A., Kang, M. -C., Lee, J. -H., Yang, H. -W., Lee, J. -S., Lim, T. I. & Jeon, Y. -J. 2014c. Polyphenol-rich fraction from Ecklonia cava (a brown alga) processing by-product reduces LPS-induced inflammation in vitro and in vivo in a zebrafish model. Algae 29:165-174. https://doi.org/10.4490/algae.2014.29.2.165
  29. Koksal, E., Bursal, E., Gulcin, İ., Korkmaz, M., Caglayan, C., Goren, A. C. & Alwasel, S. H. 2017. Antioxidant activity and polyphenol content of Turkish thyme (Thymus vulgaris) monitored by liquid chromatography and tandem mass spectrometry. Int. J. Food Prop. 20:514-525. https://doi.org/10.1080/10942912.2016.1168438
  30. Kwon, M. -J. & Nam, T. -J. 2006. Porphyran induces apoptosis related signal pathway in AGS gastric cancer cell lines. Life Sci. 79:1956-1962. https://doi.org/10.1016/j.lfs.2006.06.031
  31. Lee, H. -A., Kim, I. -H. & Nam, T. -J. 2015. Bioactive peptide from Pyropia yezoensis and its anti-inflammatory activities. Int. J. Mol. Med. 36:1701-1706. https://doi.org/10.3892/ijmm.2015.2386
  32. Leopoldini, M., Russo, N. & Toscano, M. 2011. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 125:288-306. https://doi.org/10.1016/j.foodchem.2010.08.012
  33. Miki, M., Tamai, H., Mino, M., Yamamoto, Y. & Niki, E. 1987. Free-radical chain oxidation of rat red blood cells by molecular oxygen and its inhibition by $\alpha$-tocopherol. Arch. Biochem. Biophys. 258:373-380. https://doi.org/10.1016/0003-9861(87)90358-4
  34. Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65:55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  35. Namvar, F., Mohamad, R., Baharara, J., Zafar-Balanejad, S., Fargahi, F. & Rahman, H. S. 2013. Antioxidant, antiproliferative, and antiangiogenesis effects of polyphenolrich seaweed (Sargassum muticum). BioMed Res. Int. 2013:604787.
  36. Nanjo, F., Goto, K., Seto, R., Suzuki, M., Sakai, M. & Hara, Y. 1996. Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radical. Free Radic. Biol. Med. 21:895-902. https://doi.org/10.1016/0891-5849(96)00237-7
  37. Niki, E. 1990. [3] Free radical initiators as source of water-or lipid-soluble peroxyl radicals. Methods Enzymol. 186:100-108. https://doi.org/10.1016/0076-6879(90)86095-D
  38. Perron, N. R. & Brumaghim, J. L. 2009. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem. Biophys. 53:75-100. https://doi.org/10.1007/s12013-009-9043-x
  39. Ryu, J., Park, S. -J., Kim, I. -H., Choi, Y. H. & Nam, T. -J. 2014. Protective effect of porphyra-334 on UVA-induced photoaging in human skin fibroblasts. Int. J. Mol Med. 34:796-803. https://doi.org/10.3892/ijmm.2014.1815
  40. Sanjeewa, K. K., Fernando, I. P. S., Kim, S. Y., Kim, W. S., Ahn, G., Jee, Y. & Jeon, Y. -J. 2019. Ecklonia cava (Laminariales) and Sargassum horneri (Fucales) synergistically inhibit the lipopolysaccharide-induced inflammation via blocking $NF-{\kappa}B$ and MAPK pathways. Algae 34:45-56. https://doi.org/10.4490/algae.2019.34.2.10
  41. Seifried, H. E., Anderson, D. E., Fisher, E. I. & Milner, J. A. 2007. A review of the interaction among dietary antioxidants and reactive oxygen species. J. Nutr. Biochem. 18:567-579. https://doi.org/10.1016/j.jnutbio.2006.10.007
  42. Sgherri, C., Pinzino, C. & Quartacci, M. F. 2017. Reactive oxygen species and photosynthetic functioning: past and present. In Singh, V. P., Singh, S., Tripathi, D. K., Prasa, S. M. & Chauhan, D. K. (Eds.) Rrevisiting the Role of Reactive Oxygen Species (ROS) in Plants: ROS Boon or Bane for Plants? John Wiley & Sons, Hoboken, NJ, pp. 137-155.
  43. Tanaka, K., Taino, S., Haraguchi, H., Prendergast, G. & Hiraoka, M. 2012. Warming off southwestern Japan linked to distributional shifts of subtidal canopy- forming seaweeds. Ecol. Evol. 2:2854-2865. https://doi.org/10.1002/ece3.391
  44. Yokozawa, T., Dong, E., Liu, Z. W. & Shimizu, M. 1997. Antioxidative activity of flavones and flavonols in vitro. Phytother. Res. 11:446-449. https://doi.org/10.1002/(SICI)1099-1573(199709)11:6<446::AID-PTR128>3.0.CO;2-8

Cited by

  1. Biopeptides of Pyropia yezoensis and their potential health benefits: A review vol.11, pp.9, 2021, https://doi.org/10.4103/2221-1691.321127
  2. Low Molecular Weight Oligosaccharide from Panax ginseng C.A. Meyer against UV-Mediated Apoptosis and Inhibits Tyrosinase Activity In Vitro and In Vivo vol.2021, 2020, https://doi.org/10.1155/2021/8879836
  3. Liposoluble portion of the red alga Pyropia yezoensis protects alcohol induced liver injury in mice vol.36, pp.3, 2021, https://doi.org/10.4490/algae.2021.36.4.28
  4. Downregulation of PyHRG1, encoding a novel secretory protein in the red alga Pyropia yezoensis, enhances heat tolerance vol.36, pp.3, 2020, https://doi.org/10.4490/algae.2021.36.8.26