DOI QR코드

DOI QR Code

Performance Analysis of a Portable Horizontal Axis Hydro Turbine by Computational Fluid Dynamics

CFD를 통한 휴대용 수평축 수차의 성능해석

  • Received : 2020.06.02
  • Accepted : 2020.08.28
  • Published : 2020.08.31

Abstract

A performance analysis was conducted according to changes in inflow velocity and the tip speed ratio of a portable horizontal-axis hydro turbine that can be used for marine leisure sports and outdoor activities by using the commercial computational fluid dynamics software ANSYS CFX. By using the analysis result and flow field analysis, the design was reviewed and the performance of the device was confirmed. In addition, data necessary to improve the performance of the hydro turbine were acquired by performing an additional performance analysis according to the variable blade pitch angle. The results among the numerical analysis cases show that the highest performance at all inflow velocities and blade pitch angles if achieved at a tip speed ratio of 4. The output power was found to be 30 W even under some conditions below the design flow rate. Among the numerical analysis cases, the highest output power (~ 85 W) and power coefficient (~ 0.30) were observed at an inlet flow rate of 1.5 m/s, a blade pitch angle of 3°, and a tip speed ratio of 4.

본 논문에서는 상용코드인 ANSYS CFX를 통한 해양레저 스포츠 및 야외 활동 시 사용 가능한 휴대용 수평축 수차의 유입유속(U) 및 주속비(TSR, Tip Speed Ratio) 변화에 따른 성능해석을 수행하였으며, 해석결과 및 유동장 분석을 통해 설계에 대한 검토 및 장치의 성능을 확인하였다. 또한, 추가적으로 블레이드의 피치각도(αpitch) 변화에 따른 성능해석을 통해 수차의 성능개선에 필요한 데이터를 획득하고자 하였다. 본 논문의 연구 결과 수치해석 케이스 중 주속비 4인 경우, 모든 유입속도 및 블레이드 피치 각도에서 가장 높은 성능을 보였으며, 설계 유속 이하의 일부 조건에서도 설계 출력인 30 W 이상의 출력을 보였다. 그리고 수치해석 케이스 중 가장 높은 출력과 출력계수는 유입유속 1.5 m/s, 블레이드 피치 각도 3°, 주속비 4에서 보였으며, 출력 약 85 W, 출력계수 약 0.30이었다.

Keywords

References

  1. ANSYS Inc.(2018a), ANSYS Meshing User's Guide.
  2. ANSYS Inc.(2018b), ANSYS CFX Reference Guide.
  3. Gerolymos, G. A., G. J. Michon, and J. Neubauer(2002), Analysis and Application of Chorochronic Periodicity in Turbomachinery Rotor/Stator Interaction Computations, Journal of Propulsion and Power, Vol. 18, No. 6, pp. 1139-1152. https://doi.org/10.2514/2.6065
  4. Kim, B. K.(2005), A Study on the Optimum Blade Design and the Aerodynamic Performance Analysis for the Horizontal Axis Wind Turbines, Korea National Maritime University, Department of Mechanical Engineering, Ph.D Thesis.
  5. Ministry of Trade, Industry and Energy(2017), Renewable Energy 3020 Implementation Plan.
  6. Ministry of Trade, Industry and Energy(2018), New & Renewable Energy White Paper.
  7. Nam, S. H., Y. T. Kim, Y. D. Choi, Y. H. Lee, and Y. C. Hwang(2007), Basic Cavitation Analysis of a Micro Tubular Turbine by CFD, The Korean Society for New and Renewable Energy, pp. 408-411.
  8. Natural Landscape Division Nature and Ecology Research Department(2008), Research on Coastal Landscape and the Conservational Strategy(II).
  9. Park, H. C., Q. T. Truong, L. Q. Phan, J. H. Ko, and K. S Lee(2014), Geometry Design of a Pitch Controlling Type Horizontal Axis Turbine and Comparison of Power Coefficients, Journal of the Korean Society for Marine Environment and Energy, Vol. 17, No. 3, pp. 167-173. https://doi.org/10.7846/JKOSMEE.2014.17.3.167
  10. Park, J. M. and S. M. Lee(2018), Greening Methods on the Back of Coastal Waterproof wall using Halophytes, The Journal of the Korean Society for Fisheries and Marine Sciences Education, Vol. 30, No. 1, pp. 342-353. https://doi.org/10.13000/JFMSE.2018.02.30.1.342
  11. Wilcox, D. C.(2002), Turbulence modeling for CFD, DCW industries.