DOI QR코드

DOI QR Code

컴퓨터 시뮬레이션 기법을 이용한 입계면 - 이상 입자 간 상호작용 모사 연구 동향

Current Trend of Second Phase Particle-grain Boundary Interaction Research using Computer Simulations

  • 장근옥 (경희대학교 원자력공학과)
  • Chang, Kunok (Department of Nuclear engineering, Kyung Hee University)
  • 투고 : 2020.08.06
  • 심사 : 2020.08.20
  • 발행 : 2020.08.28

초록

Since the interaction between the second-phase particle and grain boundary was theoretically explained by Zener and Smith in the late 1940s, the interaction of the second-phase particle and grain boundary on the microstructure is commonly referred to as Zener pinning. It is known as one of the main mechanisms that can retard grain growth during heat treatment of metallic and ceramic polycrystalline systems. Computer simulation techniques have been applied to the study of microstructure changes since the 1980s, and accordingly, the second-phase particle-grain boundary interaction has been simulated by various simulation techniques, and further diverse developments have been made for more realistic and accurate simulations. In this study, we explore the existing development patterns and discuss future possible development directions.

키워드

참고문헌

  1. C. S. Smith: Trans. Metall. Soc. AIME, 175 (1948) 15.
  2. S.-S. Kim, S. Lim, D.-H. Ahn, G.-G. Lee and K. Chang: Met. Mater. Int., 25 (2019) 838. https://doi.org/10.1007/s12540-018-00235-6
  3. J. Gao, R. G. Thompson and B. R. Patterson: Acta Mater., 45 (1997) 3653. https://doi.org/10.1016/S1359-6454(97)00048-7
  4. M. P. Anderson, G. S. Grest, R. D. Doherty, K. Li and D. J. Srolovitz: Scr. Metall., 23 (1989) 753. https://doi.org/10.1016/0036-9748(89)90525-5
  5. B. Kim and T. Kishi Acta Mater., 47 (1999) 2293. https://doi.org/10.1016/S1359-6454(99)00069-5
  6. Y. Suwa, Y. Saito and H. Onodera: Scr. Mater., 55 (2006) 407. https://doi.org/10.1016/j.scriptamat.2006.03.034
  7. N. Moelans, B. Blanpain and W. Patrick: Acta Mater., 53 (2005) 1771. https://doi.org/10.1016/j.actamat.2004.12.026
  8. K. Chang, W. Feng and L.-Q. Chen: Acta Mater., 57 (2009) 5229. https://doi.org/10.1016/j.actamat.2009.07.025
  9. N. Ryun, O. Hunderi and E. Nes: Acta Metall., 33 (1985) 11. https://doi.org/10.1016/0001-6160(85)90214-7
  10. K. Chang and L.-Q. Chen: Modell. Simul. Mater. Sci. Eng., 20 (2012) 055004.. https://doi.org/10.1088/0965-0393/20/5/055004
  11. K. Chang, J. Kwon and C. Rhee: Comput. Mater. Sci., 124 (2016) 483.
  12. W. B. Li and K. E. Easterling: Acta Metall., 38 (1990) 1045. https://doi.org/10.1016/0956-7151(90)90177-I
  13. K. Chang, J. Kwon and C. Rhee: Comput. Mater. Sci., 142 (2018) 297. https://doi.org/10.1016/j.commatsci.2017.10.030
  14. S. Vedantam and A. Mallick: Acta Mater., 58 (2010) 272. https://doi.org/10.1016/j.actamat.2009.09.001
  15. K. Chang and N. Moelans: Philos. Mag. Lett., 95 (2015) 202. https://doi.org/10.1080/09500839.2015.1031845
  16. K. Chang and H. Chang: Results Phys., 12 (2019) 1262. https://doi.org/10.1016/j.rinp.2019.01.028
  17. A. Yamanaka, T. Aoki, S. Ogawa and T. Takaki: J. Cryst. Growth, 318 (2011) 40. https://doi.org/10.1016/j.jcrysgro.2010.10.096
  18. J. Lee and K. Chang: Comput. Mater. Sci., 169 (2019) 109088. https://doi.org/10.1016/j.commatsci.2019.109088
  19. S. Sakane, T. Takaki, M. Ohno, Y. Shibuta and T. Aoki: Modell. Simul. Mater. Sci. Eng., 27 (2019) 1.
  20. K. Chang, C. E. Krill, Q. Du and L.-Q. Chen: Modell. Simul. Mater. Sci. Eng., 20 (2012) 1.
  21. K. Chang and N. Moelans: Acta Mater., 64 (2014) 44.
  22. H. Kim, S. Kim, W. Dong, I. Steinbach and B. Lee: M Modell. Simul. Mater. Sci. Eng., 22 (2014) 1.