Browse > Article
http://dx.doi.org/10.4150/KPMI.2020.27.4.339

Current Trend of Second Phase Particle-grain Boundary Interaction Research using Computer Simulations  

Chang, Kunok (Department of Nuclear engineering, Kyung Hee University)
Publication Information
Journal of Powder Materials / v.27, no.4, 2020 , pp. 339-342 More about this Journal
Abstract
Since the interaction between the second-phase particle and grain boundary was theoretically explained by Zener and Smith in the late 1940s, the interaction of the second-phase particle and grain boundary on the microstructure is commonly referred to as Zener pinning. It is known as one of the main mechanisms that can retard grain growth during heat treatment of metallic and ceramic polycrystalline systems. Computer simulation techniques have been applied to the study of microstructure changes since the 1980s, and accordingly, the second-phase particle-grain boundary interaction has been simulated by various simulation techniques, and further diverse developments have been made for more realistic and accurate simulations. In this study, we explore the existing development patterns and discuss future possible development directions.
Keywords
Second-phase particle; Zener pinning; Computer simulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S.-S. Kim, S. Lim, D.-H. Ahn, G.-G. Lee and K. Chang: Met. Mater. Int., 25 (2019) 838.   DOI
2 J. Gao, R. G. Thompson and B. R. Patterson: Acta Mater., 45 (1997) 3653.   DOI
3 M. P. Anderson, G. S. Grest, R. D. Doherty, K. Li and D. J. Srolovitz: Scr. Metall., 23 (1989) 753.   DOI
4 B. Kim and T. Kishi Acta Mater., 47 (1999) 2293.   DOI
5 Y. Suwa, Y. Saito and H. Onodera: Scr. Mater., 55 (2006) 407.   DOI
6 N. Moelans, B. Blanpain and W. Patrick: Acta Mater., 53 (2005) 1771.   DOI
7 K. Chang, W. Feng and L.-Q. Chen: Acta Mater., 57 (2009) 5229.   DOI
8 N. Ryun, O. Hunderi and E. Nes: Acta Metall., 33 (1985) 11.   DOI
9 K. Chang and L.-Q. Chen: Modell. Simul. Mater. Sci. Eng., 20 (2012) 055004..   DOI
10 K. Chang, J. Kwon and C. Rhee: Comput. Mater. Sci., 124 (2016) 483.
11 W. B. Li and K. E. Easterling: Acta Metall., 38 (1990) 1045.   DOI
12 K. Chang, J. Kwon and C. Rhee: Comput. Mater. Sci., 142 (2018) 297.   DOI
13 S. Vedantam and A. Mallick: Acta Mater., 58 (2010) 272.   DOI
14 K. Chang and N. Moelans: Philos. Mag. Lett., 95 (2015) 202.   DOI
15 K. Chang and H. Chang: Results Phys., 12 (2019) 1262.   DOI
16 C. S. Smith: Trans. Metall. Soc. AIME, 175 (1948) 15.
17 A. Yamanaka, T. Aoki, S. Ogawa and T. Takaki: J. Cryst. Growth, 318 (2011) 40.   DOI
18 J. Lee and K. Chang: Comput. Mater. Sci., 169 (2019) 109088.   DOI
19 S. Sakane, T. Takaki, M. Ohno, Y. Shibuta and T. Aoki: Modell. Simul. Mater. Sci. Eng., 27 (2019) 1.
20 K. Chang, C. E. Krill, Q. Du and L.-Q. Chen: Modell. Simul. Mater. Sci. Eng., 20 (2012) 1.
21 K. Chang and N. Moelans: Acta Mater., 64 (2014) 44.
22 H. Kim, S. Kim, W. Dong, I. Steinbach and B. Lee: M Modell. Simul. Mater. Sci. Eng., 22 (2014) 1.