DOI QR코드

DOI QR Code

외연적 유한요소법을 이용한 적층제조 공정 중 응력 장 변화 계산

Computation of Stress Field During Additive Manufacturing by Explicit Finite Element Method

  • 양승용 (한국기술교육대학교 기계공학부) ;
  • 김정한 (한밭대학교 신소재공학과)
  • Yang, Seung-Yong (Korea University of Technology and Education, School of Mechanical Engineering) ;
  • Kim, Jeoung Han (Hanbat National University, Department of Materials Science and Engineering)
  • 투고 : 2020.08.07
  • 심사 : 2020.08.26
  • 발행 : 2020.08.28

초록

In the present work, an explicit finite element analysis technique is introduced to analyze the thermal stress fields present in the additive manufacturing process. To this purpose, a finite element matrix formulation is derived from the equations of motion and continuity. The developed code, NET3D, is then applied to various sample problems including thermal stress development. The application of heat to an inclusion from an external source establishes an initial temperature from which heat flows to the surrounding body in the sample problems. The development of thermal stress due to the mismatch between the thermal strains is analyzed. As mass scaling can be used to shorten the computation time of explicit analysis, a mass scaling of 108 is employed here, which yields almost identical results to the quasi-static results.

키워드

참고문헌

  1. N. K. Adomako, S. Noh, C. Oh and S. Yang: Mater. Res. Lett., 7 (2019) 259. https://doi.org/10.1080/21663831.2019.1596989
  2. T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De and W. Zhang: Prog. Mater. Sci., 92 (2018) 112. https://doi.org/10.1016/j.pmatsci.2017.10.001
  3. M. M. Francois, A. Sun, W. E. King, N. J. Henson, D. Tourret, C. A. Bronkhorst, N. N. Carlson, C. K. Newman, T. Haut, J. Bakosi, J. W. Gibbs, V. Livescu, S. A. Vander Wiel, A. J. Clarke, M. W. Schraad, T. Blacker, H. Lim, T. Rodgers, S. Owen, F. Abdeljawad, J. Madison, A. T. Anderson, J. L. Fattebert, R. M. Ferencz, N. E. Hodge, S. A. Khairallah and O. Walton: Curr. Opin. Solid State Mater. Sci., 21 (2017) 198. https://doi.org/10.1016/j.cossms.2016.12.001
  4. T. Mukherjee, W. Zhang and T. DebRoy: Comp. Mater. Sci., 126 (2017) 360. https://doi.org/10.1016/j.commatsci.2016.10.003
  5. T. Mukherjee, J. S. Zuback, W. Zhang and T. DebRoy: Comp. Mater. Sci., 143 (2018) 325. https://doi.org/10.1016/j.commatsci.2017.11.026
  6. D. W. Abbot, D. V. V. Kallon, C. Anghel and P. Dube: Proce. Manuf., 35 (2019) 164.
  7. O. C. Zienkiewicz, J. Rojek, R. L. Taylor and M. Pastor: Int. J. Num. Methods Engrg., 43 (1998) 565. https://doi.org/10.1002/(SICI)1097-0207(19981015)43:3<565::AID-NME454>3.0.CO;2-9
  8. O. C. Zienkiewicz and K. Morgan: Finite elements and approximations, Dover Publications, (1983).
  9. O. C. Zienkiewcz, R. L. Taylor and P. Nithiarasu: The finite element method for fluid dynamics, 7th ed. Butterworth-Heinemann, (2014).
  10. ABAQUS 6.14 User's Guide, Dassault Systemes.
  11. S. Y. Yang, B. C. Koo and H. C. Jeong: J. Korean Soc. Railway, 7 (2004) 121.
  12. H. Aref and S. Balachandar: A first course in computational fluid dynamics, Cambridge Univ. Press, (2018).