DOI QR코드

DOI QR Code

페라이트/마르텐사이트계 산화물분산강화강의 미세조직 및 샤르피 충격특성에 미치는 코발트 함량의 영향

Effect of Cobalt Contents on the Microstructure and Charpy Impact Properties of Ferritic/martensitic Oxide Dispersion Strengthened Steel

  • 권대현 (울산대학교 중공업융합기술공학과) ;
  • 노상훈 (한국원자력연구원 신소재융합기술연구부) ;
  • 이정구 (울산대학교 중공업융합기술공학과)
  • Kwon, Daehyun (Department of Convergence Technology for Heavy Industries, University of Ulsan) ;
  • Noh, Sanghoon (Nuclear Materials Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Lee, Jung Gu (Department of Convergence Technology for Heavy Industries, University of Ulsan)
  • 투고 : 2020.07.24
  • 심사 : 2020.08.22
  • 발행 : 2020.08.28

초록

In this study, the effects of Co content on the microstructure and Charpy impact properties of Fe-Cr-W ferritic/martensitic oxide dispersion strengthened (F/M ODS) steels are investigated. F/M ODS steels with 0-5 wt% Co are fabricated by mechanical alloying, followed by hot isostatic pressing, hot-rolling, and normalizing/tempering heat treatment. All the steels commonly exhibit two-phase microstructures consisting of ferrite and tempered martensite. The volume fraction of ferrite increases with the increase in the Co content, since the Co element considerably lowers the hardenability of the F/M ODS steel. Despite the lowest volume fraction of tempered martensite, the F/M ODS steel with 5 wt% Co shows the highest micro-Vickers hardness, owing to the solid solution-hardening effect of the alloyed Co. The high hardness of the steel improves the resistance to fracture initiation, thereby resulting in the enhanced fracture initiation energy in a Charpy impact test at - 40℃. Furthermore, the addition of Co suppresses the formation of coarse oxide inclusions in the F/M ODS steel, while simultaneously providing a high resistance to fracture propagation. Owing to these combined effects of Co, the Charpy impact energy of the F/M ODS steel increases gradually with the increase in the Co content.

키워드

참고문헌

  1. P. Zheng, Y. Li, J. Zhang, J. Shen, T. Nagasaka, T. Muroga and H. Abe: Mater. Sci. Eng. A, 783 (2020) 139292. https://doi.org/10.1016/j.msea.2020.139292
  2. J. M. Byun, C. W. Park and Y. D. Kim: Met. Mater. Int., 24 (2018) 1309. https://doi.org/10.1007/s12540-018-0136-1
  3. Y. Shi, Z. Lu, L. Yu, R. Xie, Y. Ren and G. Yang: Mater. Sci. Eng. A, 774 (2020) 138937. https://doi.org/10.1016/j.msea.2020.138937
  4. X. Zhou, Z. Ma, L. Yu, Y, Hung, H. Li and Y. Liu: Met. Mater. Int., 25 (2019) 168. https://doi.org/10.1007/s12540-018-0152-1
  5. R. Lindau, A. Moslang, M. Schirra, P. Schlossmacher and M. Klimenkov: J. Nucl. Mater., 307-311 (2002) 769. https://doi.org/10.1016/S0022-3115(02)01045-0
  6. Z. Oksiuta and N. Baluc: J. Nucl. Mater., 386-388 (2009) 426. https://doi.org/10.1016/j.jnucmat.2008.12.148
  7. J. Chao, C. Capdevila, M. Serrano, A. Garcia-Junceda, J. A. Jimenez and M. K. Miller: Mater. Des., 53 (2014) 1037. https://doi.org/10.1016/j.matdes.2013.08.007
  8. L. Helis, Y. Toda, T. Hara, H. Miyazaki and F. Abe: Mater. Sci. Eng. A, 510-511 (2009) 88. https://doi.org/10.1016/j.msea.2008.04.131
  9. T. Sourmail and C. Garcia-Mateo: Comput. Mater. Sci., 34 (2005) 323. https://doi.org/10.1016/j.commatsci.2005.01.002
  10. K. Yamada, M. Igarashi, S. Muneki and F. Abe: ISIJ Int., 43 (2003) 1438. https://doi.org/10.2355/isijinternational.43.1438
  11. K.-N. Jang, T.-K. Kim and K.-T. Kim: Nucl. Eng. Technol., 51 (2019) 249. https://doi.org/10.1016/j.net.2018.09.021
  12. B. P. Sharoov and V. N. Zikeev: Met. Sci. and Heat Treat., 19 (1977) 265. https://doi.org/10.1007/BF00700806
  13. Yoshiharu Mae: Int. J. Mater. Sci. Appl., 6 (2017) 200. https://doi.org/10.11648/j.ijmsa.20170604.16
  14. G. Zhang, Z, Zhou, M. Wang, S. Li, L. Zou and L. Zhang: Fusion Eng. Des., 89 (2014) 280. https://doi.org/10.1016/j.fusengdes.2014.01.067