DOI QR코드

DOI QR Code

Fouling Mechanism of Microfiltration/Ultrafiltration by Macromolecules and a Suppression Strategy from the Viewpoint of the Hydration Structure at the Membrane Surface

  • Akamatsu, Kazuki (Department of Environmental Chemistry and Chemical Engineering, School of Advanced Engineering, Kogakuin University) ;
  • Nagumo, Ryo (Department of Engineering, Nagoya Institute of Technology) ;
  • Nakao, Shin-ichi (Department of Environmental Chemistry and Chemical Engineering, School of Advanced Engineering, Kogakuin University)
  • Received : 2020.06.24
  • Accepted : 2020.07.06
  • Published : 2020.08.31

Abstract

This short review focuses on fouling by proteins and macromolecules in microfiltration/ultrafiltration. First, an experimental system that enables investigation of how the extent of the adsorption of proteins and macromolecules on membrane surfaces contributes to a decrease in filtrate flux in microfiltration/ultrafiltration is described. Using this system, a causal relationship - not a correlation - indicating that adsorption results in a decrease in filtrate flux could be clearly demonstrated in some cases. Second, a hydration structure at the membrane surface that can suppress adsorption is discussed, inspired by biomaterial research. In their hydrated states, polymers with low-fouling properties have water molecules with a particular structure. Finally, some successful examples of the development of low-fouling membranes via surface modification using low-fouling polymers are discussed.

Keywords

References

  1. F. Meng, S.-R. Chae, A. Drews, M. Kraume, H.-S. Shin, and F. Yang, "Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material", Water Res., 43, 1489 (2009). https://doi.org/10.1016/j.watres.2008.12.044
  2. P. van der Marel, A. Zwijnenburg, A. Kemperman, M. Wessling, H. Temmink, and W. van der Meer, "Influence of membrane properties on fouling in submerged membrane bioreactors", J. Membr. Sci., 348, 66 (2010). https://doi.org/10.1016/j.memsci.2009.10.054
  3. M. Hashino, T. Katagiri, N. Kubota, Y. Ohmukai, T. Maruyama, and H. Matsuyama, "Effect of surface roughness of hollow fiber membranes with gear-shaped structure on membrane fouling by sodium alginate", J. Membr. Sci., 366, 389 (2011). https://doi.org/10.1016/j.memsci.2010.10.025
  4. K. Kimura, I. Tanaka, S. Nishimura, R. Miyoshi, T. Miyoshi, and Y. Watanabe, "Further examination of polysaccharides causing membrane fouling in membrane bioreactors (MBRs): Application of lectin affinity chromatography and MALDI-TOF/MS", Water Res., 46, 5725 (2012). https://doi.org/10.1016/j.watres.2012.08.004
  5. Z. Zhou, F. Meng, X. He, S.-R. Chae, Y. An, and X. Jia, "Metaproteomic analysis of biocake proteins to understand membrane fouling in a submerged membrane bioreactor", Environ. Sci. Technol., 49, 1068 (2015). https://doi.org/10.1021/es504489r
  6. K. Kimura and K. Kume, "Irreversible fouling in hollow-fiber PVDF MF/UF membranes filtering surface water: Effects of precoagulation and identification of the foulant", J. Membr. Sci., 602, 117975 (2020). https://doi.org/10.1016/j.memsci.2020.117975
  7. F. Xiao, P. Xiao, W. J. Zhang, and D. S. Wang, "Identification of key factors affecting the organic fouling on low-pressure ultrafiltration membranes", J. Membr. Sci., 447, 144 (2013). https://doi.org/10.1016/j.memsci.2013.07.040
  8. M. Ulbricht and G. Belfort, "Surface modification of ultrafiltraion membranes by low temperature plasma II. Graft polymerization onto polyacrylonitrile and polysulfone", J. Membr. Sci., 111, 193 (1996). https://doi.org/10.1016/0376-7388(95)00207-3
  9. D. S. Wavhal and E. R. Fisher, "Hydrophilic modification of polyethersulfone membranes by low temperature plasma-induced graft polymerization", J. Membr. Sci., 209, 255 (2002). https://doi.org/10.1016/S0376-7388(02)00352-6
  10. K. Akamatsu, Y. Kagami, and S. Nakao, "Effect of BSA and sodium alginate adsorption on decline of filtrate flux through polyethylene microfiltration membranes", J. Membr. Sci., 594, 117469 (2020). https://doi.org/10.1016/j.memsci.2019.117469
  11. K. Ishihara, H. Nomura, T. Mihara, K. Kurita, Y. Iwasaki, and N. Nakabayashi, "Why do phospholipid polymers reduce protein adsorption?", J. Biomed. Mater. Res., 39, 323 (1998). https://doi.org/10.1002/(SICI)1097-4636(199802)39:2<323::AID-JBM21>3.0.CO;2-C
  12. M. Tanaka, T. Motomura, N. Ishii, K. Shimura, M. Onishi, A. Mochizuki, and T. Hatakeyama, "Cold crystallization of water in hydrated poly(2-methoxyethyl acrylate) (PMEA)", Polym. Int., 49, 1709 (2000). https://doi.org/10.1002/1097-0126(200012)49:12<1709::AID-PI601>3.0.CO;2-L
  13. T. Hatakeyama, M. Tanaka, and H. Hatakeyama, "Studies on bound water restrained by poly(2-methacryloyloxyethyl phosphorylcholine): Comparison with polysaccharide-water systems", Acta Biomater., 6, 2077 (2010). https://doi.org/10.1016/j.actbio.2009.12.018
  14. H. Kitano, S. Tada, T. Mori, K. Tanaka, M. Gemmei-Ide, M. Tanaka, M. Fukuda, and Y. Yokoyama, "Correlation between the structure of water in the vicinity of carboxybetaine polymers and their blood-compatibility", Langmuir, 21, 11932 (2005). https://doi.org/10.1021/la0515571
  15. K. Akamatsu, M. Okuyama, K. Mitsumori, A. Yoshino, A. Nakao, and S. Nakao, "Effect of the composition of the copolymer of carboxybetaine and n-butylmethacrylate on low-fouling property of dynamically formed membrane", Sep. Purif. Technol., 108, 463 (2013).
  16. R. Nagumo, K. Akamatsu, R. Miura, A. Suzuki, H. Tsuboi, N. Hatakeyama, H. Takaba, and A. Miyamoto, "Assessment of the antifouling properties of polyzwitterions from free energy calculations by molecular dynamics simulations", Ind. Eng. Chem. Res., 51, 4458 (2012). https://doi.org/10.1021/ie2029305
  17. R. Nagumo, K. Akamatsu, R. Miura, A. Suzuki, N. Hatakeyama, H. Takaba, and A. Miyamoto, "A theoretical design of surface modifiers for suppression of membrane fouling: Potential of poly(2-methoxyethylacrylate)", J. Chem. Eng. Japan, 45, 568 (2012). https://doi.org/10.1252/jcej.12we110
  18. R. Nagumo, K. Akamatsu, R. Miura, A. Suzuki, N. Hatakeyama, H. Takaba, and A. Miyamoto, "Computational chemistry study on the microscopic interactions between biomolecules and hydrophilic polymeric materials", J. Chem. Eng. Japan, 46, 421 (2013). https://doi.org/10.1252/jcej.12we212
  19. R. Nagumo, T. Ito, K. Akamatsu, R. Miura, A. Suzuki, H. Tsuboi, N. Hatakeyama, H. Takaba, and A. Miyamoto, "Molecular dynamics simulations for microscopic behavior of water molecules in the vicinity of zwitterionic self-assembled monolayers", Polym. J., 44, 1149 (2012). https://doi.org/10.1038/pj.2012.72
  20. A. E. Marcinkowsky, K. A. Kraus, H. O. Phillips, J. S. Johnson Jr., and A. Shor, J., "Hyperfiltration studies. IV. salt rejection by dynamically formed hydrous oxide membranes", J. Am. Chem. Soc., 88, 5744 (1966). https://doi.org/10.1021/ja00976a013
  21. K. Akamatsu, K. Mitsumori, F. Han, and S. Nakao, "Fouling-free membranes obtained by facile surface modification of commercially available membranes using the dynamic forming method", Ind. Eng. Chem. Res., 50, 12281 (2011). https://doi.org/10.1021/ie201201f
  22. H. Yu, Y. Cao, G. Kang, J. Liu, M. Li, and Q. Yuan, "Enhancing antifouling property of polysulfone ultrafiltration membrane by grafting zwitterionic copolymer via UV-initiated polymerization", J. Membr. Sci., 342, 6 (2009). https://doi.org/10.1016/j.memsci.2009.05.041
  23. Y.-F. Yang, Y. Li, Q.-L. Li, L.-S. Wan, and Z.-K. Xu, "Surface hydrophilization of microporous polypropylene membrane by grafting zwitterionic polymer for anti-biofouling", J. Membr. Sci., 362, 255 (2010). https://doi.org/10.1016/j.memsci.2010.06.048
  24. A. Venault, T.-C. Wei, H.-L. Shih, C.-C. Yeh, A. Chinnathambi, S. A. Alharbi, S. Carretier, P. Aimar, J.-Y. Lai, and Y. Chang, "Antifouling pseudo-zwitterionic poly(vinylidene fluoride) membranes with efficient mixed-charge surface grafting via glow dielectric barrier discharge plasma-induced copolymerization", J. Membr. Sci., 516, 13 (2016). https://doi.org/10.1016/j.memsci.2016.05.044
  25. Y.-C. Chiang, Y. Chang, A. Higuchi, W.-Y. Chen, and R.-C. Ruaan, "Sulfobetaine-grafted poly(vinylidene fluoride) ultrafiltration membranes exhibit excellent antifouling property", J. Membr. Sci., 339, 151 (2009). https://doi.org/10.1016/j.memsci.2009.04.044
  26. D. Liu, J. Zhu, M. Qiu, and C. He, "Antifouling PVDF membrane grafted with zwitterionic poly(lysine methacylamide) brushes", RSC Adv., 6, 61434 (2016). https://doi.org/10.1039/C6RA09850A
  27. K. Akamatsu, W. Noto, H. Fukuzawa, A. Hara, and S. Nakao, "Grafting of carboxybetaine polymers to polyethylene membranes via plasma graft polymerization to improve low-fouling properties and to tune the molecular weight cut-off", Sep. Purif. Technol., 204, 298 (2018). https://doi.org/10.1016/j.seppur.2018.05.004
  28. K. Akamatsu, T. Furue, F. Han, and S. Nakao, "Plasma graft polymerization to develop low-fouling membranes grafted with poly(2-methoxyethylacrylate)", Sep. Purif. Technol., 102, 157 (2013). https://doi.org/10.1016/j.seppur.2012.10.013