DOI QR코드

DOI QR Code

Analysis of Teaching Strategies, Types of Inquiry Activities and the Relationship between Inquiry Activities and Concepts Presented in Elementary School Science Textbooks - Focusing on Earth Science -

초등학교 과학교과서에 제시된 탐구활동의 교수전략, 유형, 개념과의 연관성 분석 - 지구과학 영역을 중심으로 -

  • Received : 2020.08.12
  • Accepted : 2020.08.23
  • Published : 2020.08.31

Abstract

This study was to analysis teaching strategies, types of inquiry activities and the relationship between science concepts and inquiry activities presented in science textbooks. As a result of the study, first, the inquiry-based teaching strategies presented in science textbooks were experiment, simulation, demonstration, and field study. Second, there were 53 inquiry activities presented in 8 units related to the earth science area of science textbooks, and the types of inquiry activities were experimental observation (EO) 18, mock activity (SA) 20, investigation discussion and presentation (IP). It was analyzed as 12, data interpretation (ID) 2, and express (EX) 1 piece. Third, the relationship between inquiry activities and science concepts presented in science textbooks was analyzed. As a result of the analysis, out of a total of 42 inquiry activities, 21 inquiry activities corresponded to EA (explicit activities), in which the result of inquiry activities was directly and explicitly linked to science concepts. And IA (implicit activities), which is an implicit inquiry activity in which science concepts must be inferred using the results of inquiry activities, were analyzed as 21. In particular, IA (implicit activities), which is an implicit inquiry activity, can be said to be the result of reflecting the characteristics of earth science areas where many simulated activities (SA) are used. This is considered to be a matter to be considered in the process of developing various elementary science textbooks in the future.

Keywords

References

  1. 교육부(2015). 과학과 교육과정. 교육부 고시 제205-74호.
  2. 교육부(2018). 초등학교 3, 4, 5, 6학년 과학교과서. 서울: (주)비상.
  3. 김경순, 신은주, 한재영, 노태희(2006). 비유를 사용한 화학 개념 학습에서 유발되는 대응 오류와 개념 이해도의 관계. 대한화학회지, 50(6), 486-493. https://doi.org/10.5012/jkcs.2006.50.6.486
  4. 김범기, 이항로, 김기정(1996). 천문 개념 취도와 공간 능력과의 상관관계에 관한 연구. 한국초등과학교육학회지, 24(2), 216-225.
  5. 김순식, 이용섭(2017). '계절 변화'에 대한 탐구적 과학글쓰기 수업이 초등학생들의 과학학습동기 및 과학적 태도에 미치는 영향. 대한지구과학교육학회지, 10(3), 278-289. https://doi.org/10.15523/JKSESE.2017.10.3.278
  6. 명전옥(2001). 예비교사들의 지구과학 문제 해결 실패 요인: 달과 행성의 운동을 중심으로. 한국지구과학회지, 22(5), 339-349.
  7. 박종윤, 남정희, 유희선(2000). 상호작용을 강화한 형성 평가 수업전략이 중학교 과학학습에 미치는 영향. 한국과학교육학회지, 20(3), 468-478.
  8. 서동욱(2004). 야외 지질 학습장의 퇴적암과 지질 구조에 관한 초등학생들의 관찰 및 가설 분석. 한국지구과학회지, 25(7), 586-594.
  9. 송신철, 심규철(2018). 고등학교 통합과학 교과서에 나타난 탐구활동 유형 분석. 생물교육, 46(1), 24-38.
  10. 이창진, 홍석의(2003). 고등학교 학생을 위한 가상지질조사 웹 컨텐츠 개발: 제주도 송악산과 지삿개를 중심으로. 한국지구과학회지, 24(3), 172-180.
  11. 임성만(2015). 우리나라 역대 초등학교 교과서에서 다루어진 '지구과학' 영역의 중심개념과 탐구활동 분석 및 차기 교과서 개선 방안 모색. 초등과학교육, 34(3), 288-296.
  12. 임성만(2018). 우리나라와 싱가포르 초등과학교과서에 제시된 개념 및 탐구활동 요소 비교 분석: 지질 관련 내용을 중심으로. 대한지구과학교육학회지, 11(1), 38-54. https://doi.org/10.15523/JKSESE.2018.11.1.38
  13. 임성만(2019). 초등과학 교과서 지질 분야의 지역화 자료 개발의 필요성과 방향: '지층과 화석' 단원을 중심으로. 대한지구과학교육학회지, 12(3), 184-197. https://doi.org/10.15523/JKSESE.2019.12.3.184
  14. 임청환, 정진우(1993). 국민학교 자연과 천문분야 내용분석과 문제점. 한국과학교육학회지, 13(2), 247-256.
  15. 정수연, 장정호(2019). 2009 개정과 2015 개정 과학과 교육과정에 따른 고등학교 생명과학II 교과서의 탐구활동 유형 분석. 현장과학교육, 14(2), 160-174. https://doi.org/10.15737/SSJ.14.2.202005.160
  16. 한영욱, 샘재윤(2005). 초등학교 암석원의 실태분서 및 암석단원 지도를 위한 효과적인 방안 모색. 부산교육대학교 논문집, 7(1), 59-78.
  17. 허숙(2009). 국가교육과정 정책의 방향과 과제. 교육과정연구, 27(3), 1-13.
  18. Almendingen, S. F., Klepaker, T. & Tveita, J. (2003). Tenke det, onske det, ville det med, men gjore det ... ?: en evaluering av natur-og miljofag etter Reform 97 [Thinking, desiring, wanting, but doing? An evaluation of the school subject science and environmental subjects after Reform 97]. Retrived July 15, 2020, from https:// nordopen.nord.no/nord-xmlui/handle/11250/145676
  19. Anderson, R. D. (2002). Reforming science teaching: What research says about inquiry. Journal of Science Techer Education, 13(1), 1-12.
  20. Ball, D. L. & Feiman-Nemser, S. (1988). Using textbooks and teacher’s guides: A dilemma for beginning teachers and teacher educators. Curriculum Inquiry, 18(4), 401-423. https://doi.org/10.2307/1179386
  21. Bell, R. L., Smetana, L. & Binns, I. (20050. Simplifying inquiry instruction. The Science Teacher, 72(7), 30-33.
  22. Caliskan, O. (2011). Virtual field trips in education of earth and environment sciences. Procedia Social and Behavioral Sciences, 15, 3239-3243. https://doi.org/10.1016/j.sbspro.2011.04.278
  23. Chiappetta, E. & Fillman, D. (2007). Analysis of five high school biology textbooks used in the United States for inclusion of the nature of science. International Journal of Science Education, 29(15), 1847-1868. https://doi.org/10.1080/09500690601159407
  24. Chinn C. A., & Malhotra B. A. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86(2), 175-218. https://doi.org/10.1002/sce.10001
  25. Colaizzi, P. E. (1978). Psychological research as the phenomenologist view it existential phenomenology. New York: Oxford University press.
  26. Constantinou, C. P. Tsivitanidou, O. E. & Rybska, E. (2018). What Is Inquiry-Based Science Teaching and Learning?. In O. E. Tsivitanidou et al. (Eds), Professional development for inquiry-based science teaching and learning (pp. 1-23). Contributions from Science Education Research 5.
  27. DiGiuseppe, M. (2014). Representing nature of science in a science textbook: Exploring author-editor–publisher interactions. International Journal of Science Education, 36(7), 1061-1082. https://doi.org/10.1080/09500693.2013.840405
  28. Duschl, R. & Smith, M. (2001). "Earth science", Brophy, J. (Ed), Subject-specific instructional methods and activities (Advances in Research on Teaching, Vol. 8) (pp. 269-290). Emerald Group Publishing Limited, Bingley.
  29. Hofstein A. & Lunetta V. N. (2004). The laboratory in science education: Foundation for the 21st century. Science Education, 88(1), 28-54. https://doi.org/10.1002/sce.10106
  30. Huberman, A. M. & Miles, M. (1994). Qualitative data analysis. Thousand Oaks, CA: Sage Publications.
  31. Hubisz, J. (2003). Middle-school texts don't make the grade. Physics Today, 56(5), 50-54. https://doi.org/10.1063/1.1583534
  32. Kesidou, S. & Roseman, J. E. (2002). How well do middle school science programs measure up? Findings from Project 2061s curriculum review. Journal of Research in Science Teaching, 39(6), 522-549. https://doi.org/10.1002/tea.10035
  33. Kusnick, J. (2002). Growing pebbles and conceptual prisms-Understanding the sources of student misconceptions about rock formation. Journal of Geoscience Education, 50(1), 31-39. https://doi.org/10.5408/1089-9995-50.1.31
  34. Leite, L. (1999). Heat and temperature: An analysis of how these concepts are dealt with in textbooks. European Journal of Teacher Education, 22(1), 75-88. https://doi.org/10.1080/0261976990220106
  35. Linn, M. C., Davis, E. A. & Eylon, B. (2004). The scaffolded knowledge integration framework for instruction. In M. C. Linn, E. A. Davis & P. Bell (Eds), Internet environments for science education (pp. 47-72). Mahwah, NJ: Lawrence Erlbaum Associates.
  36. Marzano, R. (2007). The art and science of teaching: A comprehensive framework for effective instruction. Alexsandria, VA: The Association for Supervision and Curriculum Development.
  37. Mullis, I. V., Martin, M. O., Foy, P. & Arora, A. (2012). TIMSS 2011 international results in mathematics. International Association for the Evaluation of Educational Achievement.
  38. Orgill, M. K. & Bodner, G. M. (2004). Locks and keys: How analogies are used and perceived in biochemistry classes. Paper presented at the Annual Meeting of the NARST, Vancouver, BC.
  39. Ramasundaram, V., Grunwald, S., Mageot, A. & Comerford, N. B. (2005). Development of an environmental virtual laboratory. Computer and Education, 45(1), 21-34. https://doi.org/10.1016/j.compedu.2004.03.002
  40. Rillero, P. (2010). The rise and fall of science education: A content analysis of Science in elementary reading textbooks of the 19th century. School Science and Mathematics Journal, 110(5), 277-286. https://doi.org/10.1111/j.1949-8594.2010.00034.x
  41. Rivard, L. P. (1994). A review of writing to learning science: Implication for practice and research. Journal of Research in Science Teaching, 31(9), 969-983. https://doi.org/10.1002/tea.3660310910
  42. Roseman, J. E., Kulm, G. & Shuttleworth, S. (2001). Putting textbooks to the test. ENC Focus, 8(3), 56-59.
  43. Sadler, T. D., Burgin, S., Mckinney, L. & Ponjuan, L. (2010). Learning Science through Research Apprenticeships: A Critical Reviewof the Literature. Journal of Research in Science Teaching, 47(3), 235-256. https://doi.org/10.1002/tea.20326
  44. Schwartz, R. S., Lederman, N. G. & Crawford, B. A. (2004). Developing views of nature of science in an authenticcontext: An explicit approach to bridging the gap between nature of science and scientific inquiry. Science Education, 88(4), 610-645. https://doi.org/10.1002/sce.10128
  45. Schwarz, C. V., Gunckel, K. L., Smith, E. L., Covitt, B. A., Bae, M., Enfield, M. & Tsurusaki, B. K. (2008). Helping elementary preservice teachers learn to use curriculum materials foreffective science teaching. Science Education, 92(2), 345-377. https://doi.org/10.1002/sce.20243
  46. Shamsudin, N. M., Abdullah, N. & Yaamat, N. (2013). Strategies of teaching science using an inquiry based science education(IBSE) by novice chemistry teachers. Procedia-Social and Behavioral Sciences, 90, 583-592. https://doi.org/10.1016/j.sbspro.2013.07.129
  47. Stern, L. & Roseman, J. E. (2004). Can middle-school science textbooks help students learn important ideas? Findings from project 2061s curriculum evaluation study: Life science. Journal of Research in Science Teaching, 41(6), 538-568. https://doi.org/10.1002/tea.20019
  48. Stoffels, N. T. (2005). "There is a worksheet to be followed": A case study of a science teacher's use of learning support texts for practical work. African Journal of Research in Mathematics, Science and Technology Education, 9(2), 147-157. https://doi.org/10.1080/10288457.2005.10740585
  49. Suarez, M. L. (2011). The relationship between inquirybased science instruction and student achievement. Doctoral dissertation, University of Southern Mississippi, Mississiphi, USA.
  50. Thomas, W. J. (2000). A review of research on project based learning. San Farael, CA: Autodes Foundation.
  51. Wickman, P. O. (2004), The practical epistemologies of the classroom: A study of laboratory work. Science Education, 88(3), 325-344. https://doi.org/10.1002/sce.10129
  52. Wier, B., Cain, B. J. & Fredricks, K. (2000). "Living inside the earth", Children's preconceptions about how we addressed them. Paper Presented at the National Conference of the National Science Teachers Association, Orlando, FL.
  53. Yager, R. E. (1996). Science/Technology/Society as reform in science education. Albany, NY: State University of New York Press.