DOI QR코드

DOI QR Code

Comparative Study on Soil-Structure Interaction Models for Modal Characteristics of Wind Turbine Structure

풍력 구조물의 진동 특성 분석을 위한 지반-구조물 상호작용 모델의 비교 연구

  • Kim, Jeongsoo (Korea BIM Research Center, Department of Smart Construction, Korea Institute of Civil Engineering and Building Technology)
  • 김정수 (한국건설기술연구원 스마트건설혁신본부 국가BIM연구센터)
  • Received : 2020.03.05
  • Accepted : 2020.04.28
  • Published : 2020.08.31

Abstract

In this study, natural frequencies are compared using several pile-soil interaction (PSI) models to evaluate the effects of each model on resonance safety checks for a monopile type of wind turbine structure. Base spring, distributed spring, and three-dimensional brick-shell models represented the PSIs in the finite element model. To analyze the effects of the PSI models on a natural frequency, after a stiffness matrix calculation and Winkler-based beam model for base spring and distributed spring models were presented, respectively; natural frequencies from these models were investigated for monopiles with different geometries and soil properties. These results were compared with those from the brick-shell model. The results show that differences in the first natural frequency of the monopiles from each model are small when the small diameter of monopile penetrates hard soil and rock, while the distributed spring model can over-estimate the natural frequency for large monopiles installed in weak soil. Thus, an appropriate PSI model for natural frequency analyses should be adopted by considering soil conditions and structure scale.

본 논문은 모노파일 풍력 지지구조물에 대한 공진 안전성 평가에서 여러 말뚝-구조물 상호작용(PSI) 모델을 사용하여 고유진동수를 비교하였다. PSI 재현을 위한 유한요소모델은 기저 스프링 모델, 분산 스프링 모델, 3차원 고체-쉘 모델을 사용하였다. PSI 모델이 고유주파수에 미치는 영향을 분석하기 위해 기저 스프링과 분산 스프링 모델 적용을 위한 강성행렬 산정법과 Winkler 보 모델을 각각 논문에 나타내고 이들 모델로부터 도출된 서로 다른 기하 및 지반조건을 갖는 모노파일의 고유진동수를 조사하였다. 해석결과는 또한 3차원 고체-쉘 모델의 고유진동수와도 비교되었다. 해석결과는 소구경 모노파일이 견고한 지반 및 암반에 관입된 경우 각 해석모델로부터 얻어진 고유진동수의 차이가 거의 없음을 보여준다. 반면 연약 지반에 설치된 대구경 모노파일에 대해 분산스프링 모델은 고유진동수를 과대평가할 수 있다. 따라서 고유진동수 평가 시 구조물 규모와 지반 조건을 고려해 적합한 PSI모델이 적용되어야 한다.

Keywords

References

  1. ABAQUS (2013) ABAQUS user's and Theory Manuals, ver.6.13. Rhode Isloand: Hibbitt, Karlsson & Sorensen, Inc.
  2. Adhikari, S., Bhattacharya, S. (2012) Dynamic Analysis of Wind Turbine Towers on Flexible Foundations, Shock & Vib., 19, pp.37-56. https://doi.org/10.1155/2012/408493
  3. Bae, K.T., Kim, Y.S., Jin, B.M., Lee, J.P., Kim, J.Y. (2016) A Case Study on Concrete Foundation Design for offshore Wind Power, KSCE 2016 Convention, pp.178-179.
  4. Bush, E., Manuel, L. (2009) The Influence of Foundation Modeling Assumptions on Long-Term Load Prediction for Offshore Wind Turbines, Proc. of the ASME 28th International Conference on Ocean, Offshore and Arctic Engineering, Honolulu Hawaii, May.
  5. Byrne, B.W., McAdam, R.A., Burd, H.J., Houlsby, G.T., Martin, C.M., Beuckelaers, W.J.A.P., Zdravkovic, L., Taborda, D.M.G, Potts, D.M., Jardine, R.J., Ushev, E., Liu, T., Abadias, D., Gavin, K., Igoe, D., Doherty, P., Skov Gretlund, J., Pacheco Andrade, M., Muir Wood, A., Schroeder, F.C., Turner, S., Plummer, M.A.L. (2017) PISA: New Design Methods for Offshore Wind Turbine Monopiles, Revue Francaise de Geotechnique, 158(3), pp.142-161.
  6. Darvishi-Alamouti, S., Bahaari, M.R., Moradi, M. (2017) Natural Frequency of Offshore Wind Turbines on Rigid and Flexible monopiles in Cohesionless Soils with Linear Stiffness Distribution, Appl. Ocean Res., 68, pp.91-102. https://doi.org/10.1016/j.apor.2017.07.009
  7. Ford, W. (2014) Numerical Linear Algebra with Applications: Using Matlab, Academic Press, 1st Edition, pp.379-438.
  8. Jang, H.S., Kim, H.S., Kwak, Y.M., Park, J.H. (2013) Analysis of Lateral Behavior of Offshore Wind Turbine Monopile Foundation in Sandy Soil, J. Korean Soc. Steel Constr., 25(4), pp.421-430. https://doi.org/10.7781/kjoss.2013.25.4.421
  9. Jang, H.S., Nam, H.W., Kwak, Y.M., Yoon, S.W., Kim, H.S. (2015) The Influence of Suction Foundation Model for Offshore Wind Turbine, J. Korean Soc. Coast. & Ocean Eng., 27(5), pp.339-344. https://doi.org/10.9765/KSCOE.2015.27.5.339
  10. Jang, Y., Cho, S., Choi, C. (2014) Design Load Analysis for Offshore Monopile with Various Estimation Methods of Ground Stiffness, J. Korean Geosynthetics Soc., 15(9), pp.21-31.
  11. Jung, S., Kim, S.R., Lee, J., Lee, C.H. (2014) Effect of Foundation Flexibility of Offshore Wind Turbine on Force and Movement at Monopile Head, J. Korean Geosynthetics Soc., 13(4), pp.21-31. https://doi.org/10.12814/jkgss.2014.13.4.021
  12. Kim, B.J., Plodpradit, P., Suthasupradit, S., Kim, H.G., Kim, K.D. (2017) Ship Collision Analysis of Concrete Offshore Wind Turbine Structure Supported with Suction Pile, J. Wind Energy, 8(2), pp.45-56. https://doi.org/10.33519/kwea.2017.8.2.007
  13. Kim, N.H., Bang, U.S., Lee, K.J. (2006) A Study on Lateral Movement of Drilled Shaft Considering Stratification, Yooshin Technical Bulletin, 13, pp.154-163.
  14. Kim, D.H., Park, J.J., Chang, Y.C., Jeong, S.S. (2018) Proposed Shear Load-transfer Curves for Prebored and Precast Steel Piles, J. Korean Geotechnical Soc., 34(12), pp.43-58. https://doi.org/10.7843/KGS.2018.34.12.43
  15. Kim, J., Jeong, Y.J., Park, M.S., Song, S. (2019) Effect of Soil Stiffness Estimation on Natural Frequency of Monopiles, KSCE 2019 Convention, pp.218-219.
  16. Kim, J., Kim, M.K., Jung, S.D. (2015) Two-Dimensional Numerical Tunnel Model using a Winkler based Beam Element and Its Application into Tunnel Monitoring Systems, Clust. Comput., 18(4), pp.707-719. https://doi.org/10.1007/s10586-014-0418-4
  17. Kim, P.H., Kang, S.Y., Lee, Y.W., Kang, Y.J. (2016a) Study on the Natural Frequency of Wind Turbine Tower Based on Soil Pile Interaction to Evaluate Resonant Avoidance Frequency, J. Korea Acad.-Ind. Cooperation Soc., 17(4), pp.734-742. https://doi.org/10.5762/KAIS.2016.17.4.734
  18. Kim, M.Y., Yun, H.T., Kwak, T.Y. (2002) Derivation of Exact Dynamic Stiffness Matrix of a Beam-Column Element on Elastic Foundation, J. Comput. Struct. Eng. Inst. Korea, 15(3), pp.463-469.
  19. Kim, W.S., Jeong, Y., Kim, K., Kim, K.J., Lee, J.H. (2016b) Seismic Analysis for Multi-pile Concrete Foundation in 5MW class Offshore Wind Turbine, J. Comput. Struct. Eng. Inst. Korea, 29(3), pp.209-218. https://doi.org/10.7734/COSEIK.2016.29.3.209
  20. Korean Geotechnical Society(KGS) (2014) Design of Offshore Wind Turbine Foundation for Geotechnical Engineers, CIR, pp.238-254.
  21. Kurabayashi, H., Cho, S.K. (2016) Vibration Control Device, KR Patent, No.1016584900000.
  22. Limkatanyu, S., Kuntiyawichai, K., Spacone, E., Kwon, M. (2013) Nonlinear Winkler-Based Beam Element with Improved Displacement Shape Functions, KSCE J. Civil Eng., 17(4), pp.192-201. https://doi.org/10.1007/s12205-013-1606-0
  23. Lee, D.I., Park, S.Y., Cho, Y.W., Kim, H.S. (2016) Development of Concrete Supporting Structure Design Using Suction Foundation in Offshore Wind Farms, Yooshin Technical Report, 23, pp.45-56.
  24. Smith, I.M., Griffiths, D.V. (2004) Programming the Finite Element Method, 4th, John Wiley & Sons, Chichester, England, pp.25-29.
  25. Zaaijer, M. (2002) Foundation Models for the Dynamic Response of Offshore Wind Turbines, Marine Renewable Energy Conference, Newcastle, UK.