DOI QR코드

DOI QR Code

Hydrogen Enriched Gas Turbine: Core Technologies and R&D Trend

수소혼소용 가스터빈의 요소기술 및 국내외 기술개발 동향

  • 주용진 (한국전력공사 전력연구원) ;
  • 김미영 (한국전력공사 전력연구원) ;
  • 박정극 (한국전력공사 전력연구원) ;
  • 박세익 (한국전력공사 전력연구원) ;
  • 신주곤 (한국전력공사 전력연구원)
  • Received : 2020.06.16
  • Accepted : 2020.08.30
  • Published : 2020.08.30

Abstract

Recently, renewable power is rapidly increasing globally due to extensive effort to mitigate climate change and conventional power generation industry faces new challenges. The gas turbine technology has potentials to expand its role in future power generation based on the intrinsic characteristics such as fuel diversity and fast load following ability. Hydrogen is one of the most promising fuel in terms of reducing emissions and storing variable renewable energy and replacing hydrocarbon fuel with hydrogen has become very popular. Therefore, this paper presents the core technologies to combust hydrogen added fuel efficiently in gas turbines and the analysis of domestic and international R&D trends.

Keywords

References

  1. Minster of Trade, Industry and Energy, "The third energy basic plan (2019-2040)", Minster of Trade, Industry and Energy, 2019, pp. 24-33. Retrieved from http://www.motie.go.kr/motie/py/brf/motiebriefing/motiebriefing402.do?brf_code_v=402#header.
  2. Minster of Trade, Industry and Energy, "Korea hydrogen economy policy 2040", Minster of Trade, Industry and Energy, 2019, pp. 3-4. Retrieved from https://www.motie.go.kr/common/download.do?fid=bbs&bbs_cd_n=81&bbs_seq_n=161262&file_seq_n=2.
  3. ETN Global, "Hydrogen gas turbines - the path towards a zero-carbon gas turbine", ETN Global, 2020, pp. 2, 10-11. Retrieved from https://etn.global/wp-content/uploads/2020/02/ETN-Hydrogen-Gas-Turbines-report.pdf.
  4. National Assembly Budget Office, "Fine dust control special measures status and improvement tasks", National Assembly Budget Office, 2016, pp. 70-71. Retrieved from https://www.nabo.go.kr/Sub/04Etc/04_Search.jsp?query=%EB%AF%B8%EC%84%B8%EB%A8%BC%EC%A7%80.
  5. N. Kim, "Study on operation method of the electrical power market considering the environmental merit order", Korea Energy Economics Institute, 2017, pp. 3. Retrieved from http://www.keei.re.kr/web_keei/d_results.nsf/0/3DD0BCA0D73E6619492582BB00800431/$file/17-01_%EC%88%98%EC%8B%9C_%ED%99%98%EA%B2%BD%EA%B8%89%EC%A0%84%EC%9D%84%20%EA%B3%A0%EB%A0%A4%ED%95%9C%20%EC%A0%84%EB%A0%A5%EC%8B%9C%EC%9E%A5%20%EC%9A%B4%EC%98%81%EB%B0%A9%EC%95%88%20%EC%97%B0%EA%B5%AC.pdf.
  6. J. Goldmeer, "Power to gas: hydrogen for power generationfuel flexible gas turbines as enablers for a low or reduced carbon energy ecosystem(GEA33861)", GE power, 2019, pp. 7-9, 11. Retrieved from https://www.ge.com/content/dam/gepower/global/en_US/documents/fuel-flexibility/GEA33861%20Power%20to%20Gas%20-%20Hydrogen%20for%20Power%20Generation.pdf.
  7. Elna J. K. Nisson, C. Brackmann, A. Abou-Taouk, J. Larffldt and D. Moell, "Hydrogen addition to flames at gas-turbine relevant conditions(Report2017:391)", Energiforsk, Sweden, 2017, pp. 34. Retrieved from https://energiforskmedia.blob.core.windows.net/media/22508/hydrogen-additionto-flames-energiforskrapport-2017-391.pdf.
  8. H. Miao, L. Lu, and Z. Huang, "Flammability limits of hydrogen-enriched natural gas", Int. J. Hydrogen Energy, Vol. 36, No. 11, 2011, pp. 6937-6947, doi: https://doi.org/10.1016/j.ijhydene.2011.02.126.
  9. E. S. Cho and S. H Chung, "Improvement of flame stability and NOx reduction in hydrogen-added ultra lean premixed combustion", Journal of Mechanical Science and Technology, Vol. 23, No. 3, 2009, pp. 650-658, doi: https://dx.doi.org/10.1007/s12206-008-1223-x.
  10. R. Lieve, "Flexibility upgrades for future energy", KicMPi Project 6-25 Seminar, 2019, pp. 10, 26. Retrieved from https://www.kicmpi.com/sites/default/files/2019-10/pitch_3_-_ansaldo_thomassen.pdf.
  11. "Gas turbine fuel system", Retrieved from http://gasturbin etutorial.blogspot.com/2013/06/gas-turbine-fuel-system.html.
  12. S. Theron, "Major enhancements in FLOWNEX 2015: combustors, importers, and pipes", PADT, 2015. Retrieved from https://www.padtinc.com/blog/major-enhancementsin-flownex-2015-combustors-importers-and-pipes/.
  13. Seik Park, "The study for LH gas including syn-fuel compatibility on MHPS gas turbine(Final Report)", KEPCO Research Institute, Daejeon, 2019, pp. 9-10, 41-42.
  14. D. Kim, "Review on the development trend of hydrogen g as turbine combustion technology", J. Korean Soc. Combust., Vol. 24, No. 4, 2019, pp. 1-10, doi: http://dx.doi.org/10.15231/jksc.2019.24.4.001.
  15. M. Zajadatz, F. Güthe, E. Freitag, T. Ferreira-Providakis, T. Wind, F. Magni, and J. Goldmeer, "Extended range of fuel capability for GT13E2 AEV burner with liquid and gaseous fuels", Proceeding of ASME Turbo Expo, 2018, pp. GT2018-76374, doi: https://doi.org/10.1115/GT2018-76374.
  16. M. Andersson, J. Larfeldt, and A. Larsson, "Co-firing with hydrogen in industrial gas turbines", Swedish Gas Technology Centre, 2013, pp. 25-30. Retrieved from http://www.sgc.se/ckfinder/userfiles/files/SGC256.pdf.
  17. J. Larfeldt, "Hydrogen co-firing in Siemens low NOx industrial gas turbines", Proceeding of Power-Gen Europe, Germany, 2017, pp. 1-12. Retrieved from https://www.semanticscholar.org/paper/Hydrogen-Co-Firing-in-Siemens-Low-NOX-Industrial-Larfeldt/37fd8e07212bf1e60f6db535d6e422b11880b816.
  18. T. Wind, F. Güthe, and K. Syed, "Co-firing of hydrogen and natural gases in lean premixed conventional and reheat burners (Alstom GT26)", Proceeding of ASME Turbo Expo 2014, pp. GT2014-25813, doi: https://doi.org/10.1115/GT2014-25813.
  19. Ansaldo Energia, "Time to face our world's Biggest CH2allenge", Ansaldo Eergia Product Brochure, 2020, pp. 3-4. Retrieved from https://www.ansaldoenergia.com/PublishingImages/Idrogeno/Ansaldo-Energia-H2.pdf.
  20. E. Yang and J. Yim, "Analysis on the background and key contents of Japanese hytdrogen basic strategy", World Energy Market Insight, Vol. 18, No. 44, 2018, pp. 14-15. Retrieved from http://www.keei.re.kr/keei/download/WEMI1844.pdf.
  21. T. Asai, Y. Akiyama, and S. Dodo, "Recent advances in carbon capture and storage. Chapter.1. Development of a state-ofthe-art dry low NOx gas turbine combustor for IGCC with CCS", INTECH, 2017, pp. 7-17, doi: https://dx.doi.org/10.5772/66742.