DOI QR코드

DOI QR Code

Preparation of AgCl/Ag3PO4/Diatomite Composite by Microemulsion Method for Rapid Photo-Degradation of Rhodamine B with Stability under Visible Light

  • Zhu, Hai-Tao (Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University) ;
  • Ren, Qi-Fang (Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University) ;
  • Jin, Zhen (Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University) ;
  • Ding, Yi (Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University) ;
  • Liu, Xin-Yu (Key Laboratory of Huizhou Architecture in Anhui Province, Anhui Jianzhu University) ;
  • Ni, Xi-Hui (Key Laboratory of Huizhou Architecture in Anhui Province, Anhui Jianzhu University) ;
  • Han, Meng-Li (Key Laboratory of Huizhou Architecture in Anhui Province, Anhui Jianzhu University) ;
  • Ma, Shi-Yu (Key Laboratory of Huizhou Architecture in Anhui Province, Anhui Jianzhu University) ;
  • Ye, Qing (Key Laboratory of Huizhou Architecture in Anhui Province, Anhui Jianzhu University) ;
  • Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
  • 투고 : 2020.06.10
  • 심사 : 2020.07.14
  • 발행 : 2020.08.27

초록

In this paper, AgCl/Ag3PO4/diatomite photocatalyst is successfully synthesized by microemulsion method and anion in situ substitution method. X-ray diffraction (XRD), photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), and ultraviolet-visible spectroscopy (UV-Vis) are used to study the structural and physicochemical characteristics of the AgCl/Ag3PO4/diatomite composite. Using rhodamine B (RhB) as a simulated pollutant, the photocatalytic activity and stability of the AgCl/Ag3PO4/diatomite composite under visible light are evaluated. In the AgCl/Ag3PO4/diatomite visible light system, RhB is nearly 100 % degraded within 15 minutes. And, after five cycles of operation, the photocatalytic activity of AgCl/Ag3PO4/diatomite remains at 95 % of the original level, much higher than that of pure Ag3PO4 (40 %). In addition, the mechanism of enhanced catalytic performance is discussed. The high photocatalytic performance of AgCl/Ag3PO4/diatomite composites can be attributed to the synergistic effect of Ag3PO4, diatomite and AgCl nanoparticles. Free radical trapping experiments are used to show that holes and oxygen are the main active species. This material can quickly react with dye molecules adsorbed on the surface of diatomite to degrade RhB dye to CO2 and H2O. Even more remarkably, AgCl/Ag3PO4/diatomite can maintain above 95 % photo-degradation activity after five cycles.

키워드

참고문헌

  1. Y. Lin, S. Wu, C. Yang, M. Chen and X. Li, Appl. Catal., B, 245, 71 (2019). https://doi.org/10.1016/j.apcatb.2018.12.048
  2. J. A. Terrett, J. D. Cuthbertson, V. W. Shurtleff and D. W. C. MacMillan, Nature, 524, 330 (2015). https://doi.org/10.1038/nature14875
  3. Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu and R. L. Withers, Nat. Mater., 9, 559 (2010). https://doi.org/10.1038/nmat2780
  4. Y. Bi, S. Ouyang, N. Umezawa, J. Cao and J. Ye, J. Am. Chem. Soc., 133, 6490 (2011). https://doi.org/10.1021/ja2002132
  5. C. Chen, H. Zeng, M. Yi, G. Xiao, S. Xu, S. Shen and B. Feng, Appl. Catal., B, 252, 47 (2019). https://doi.org/10.1016/j.apcatb.2019.03.083
  6. Y. Chen, P. Zhu, M. Duan, J. Li, Z. Ren and P. Wang, Appl. Surf. Sci., 486, 198 (2019). https://doi.org/10.1016/j.apsusc.2019.04.232
  7. J. Zhang, K. Yu, Y. Yu, L.-L. Lou, Z. Yang, J. Yang and S. Liu, J. Mol. Catal. A: Chem., 391, 12 (2014). https://doi.org/10.1016/j.molcata.2014.04.010
  8. L. Liu, Y. Qi, J. Lu, S. Lin, W. An, Y. Liang and W. Cui, Appl. Catal., B, 183, 133 (2016). https://doi.org/10.1016/j.apcatb.2015.10.035
  9. L. Tian, X. Yang, X. Cui, Q. Liu and H. Tang, Appl. Surf. Sci., 463, 9 (2019). https://doi.org/10.1016/j.apsusc.2018.08.209
  10. H. Tang, Y. Fu, S. Chang, S. Xie and G. Tang, Chin. J. Catal., 38, 337 (2017). https://doi.org/10.1016/S1872-2067(16)62570-6
  11. X. Li, P. Xu, M. Chen, G. Zeng, D. Wang, F. Chen, W. Tang, C. Chen, C. Zhang and X. Tan, Chem. Eng. J., 366, 339 (2019). https://doi.org/10.1016/j.cej.2019.02.083
  12. P. Lin, J. Shen, C. Prasad, H. Tang, Q. Liu and M. Zhang, Ceram. Int., 45, 21120 (2019). https://doi.org/10.1016/j.ceramint.2019.07.088
  13. H. Cai, L. Sun, Y. Wang, T. Song, M. Bao and X. Yang, Chem. Eng. J., 369, 1078 (2019). https://doi.org/10.1016/j.cej.2019.03.143
  14. F. Chen, Q. Yang, X. Li, G. Zeng, D. Wang, C. Niu, J. Zhao, H. An, T. Xie and Y. Deng, Appl. Catal., B, 200, 330 (2017). https://doi.org/10.1016/j.apcatb.2016.07.021
  15. Z. Hu, J. Lyu and M. Ge, Mater. Sci. Semicond. Process., 105, 104731 (2020). https://doi.org/10.1016/j.mssp.2019.104731
  16. C. Liang, L. Zhang, H. Guo, C.-G. Niu, X.-J. Wen, N. Tang, H.-Y. Liu, Y.-Y. Yang, B.-B. Shao and G.-M. Zeng, Chem. Eng. J., 361, 373 (2019). https://doi.org/10.1016/j.cej.2018.12.092
  17. C. An, S. Peng and Y. Sun, Adv. Mater., 22, 2570 (2010). https://doi.org/10.1002/adma.200904116
  18. Y. A. Wu, L. Li, Z. Li, A. Kinaci, M. K. Chan, Y. Sun, J. R. Guest, I. M. Nulty, T. Rajh and Y. Liu, ACS Nano., 10, 3738 (2016). https://doi.org/10.1021/acsnano.6b00355
  19. Z. Ruan, G. Liu, J. Shu, C. Ren and Z. Wang, RSC Adv., 9, 5858 (2019). https://doi.org/10.1039/c8ra09263j
  20. S. Zhang, J. Li, X. Wang, Y. Huang, M. Zeng and J. Xu, ACS Appl. Mater. Interfaces., 6, 22116 (2014). https://doi.org/10.1021/am505528c
  21. S. Lou, W. Wang, L. Wang and S. Zhou, J. Alloys Compd., 781, 508 (2019). https://doi.org/10.1016/j.jallcom.2018.12.115
  22. Y. Tang, V. P. Subramaniam, T. H. Lau, Y. Lai, D. Gong, P. D. Kanhere, Y. H. Cheng, Z. Chen and Z. Dong, Appl. Catal., B, 106, 577 (2011). https://doi.org/10.1016/j.apcatb.2011.06.018
  23. D. Chen, T. Li, Q. Chen, J. Gao, B. Fan, J. Li, X. Li, R. Zhang, J. Sun and L. Gao, Nanoscale, 4, 5431 (2012). https://doi.org/10.1039/c2nr31030a
  24. A. F. D. Namor, A. E. Gamouz, S. Frangie, V. Martinez, L. Valiente and O. A. Webb, J. Hazard. Mater., 241, 14 (2012). https://doi.org/10.1016/j.jhazmat.2012.09.030
  25. B. Wang, F. C. Godoi, Z. Sun, Q. Zeng, S. Zheng and R. L. Frost, J. Colloid Interface Sci., 438, 204 (2015). https://doi.org/10.1016/j.jcis.2014.09.064
  26. X. Zhang, J. Zhou, D. Yang, S. Chen, J. Huang and Z. Li, Catal. Today, 335, 228 (2019). https://doi.org/10.1016/j.cattod.2018.11.047
  27. P. Tanniratt, T. Wasanapiarnpong, C. Mongkolkachit and P. Sujaridworakun, Ceram. Int., 42, 17605 (2016). https://doi.org/10.1016/j.ceramint.2016.08.074
  28. H. B. Fan, Q. F. Ren, S. L. Wang, Z. Jin and Y. Ding, J. Alloys Compd., 775, 845 (2019). https://doi.org/10.1016/j.jallcom.2018.10.152
  29. H. B. Fan, Q. F. Ren, M. Yu, S. L. Wang, J. Y. Cao, Z. Jin and Y. Ding, Mater. Rev. B: Res. Pap., 33, 3383 (2019).
  30. P. Zhu, Y. Chen, M. Duan, M. Liu and P. Zou, Powder Technol., 336, 230 (2018). https://doi.org/10.1016/j.powtec.2018.05.060
  31. J. Guo, H. Shi, X. Huang, H. Shi and Z. An, J. Colloid Interface Sci., 515, 10 (2018). https://doi.org/10.1016/j.jcis.2018.01.015
  32. L. Zhou, W. Zhang, L. Chen, H. Deng and J. Wan, Catal. Commun., 100, 191 (2017). https://doi.org/10.1016/j.catcom.2017.06.049
  33. W. W. Wang, H. E. Jing, L. I. Jiao and W. W. Cai, J. Inorg. Mater., 32, 263 (2017). https://doi.org/10.15541/jim20160311
  34. H. Li, Y. Zhang, Q. Zhang, Y. Wang, Y. Fan, X. Gao and J. Niu, Appl. Surf. Sci., 490, 481 (2019). https://doi.org/10.1016/j.apsusc.2019.06.072
  35. X. Yao and X. Liu, J. Hazard. Mater., 280, 260 (2014). https://doi.org/10.1016/j.jhazmat.2014.07.079
  36. M. Ao, K. Liu, X. Tang, Z. Li, Q. Peng and J. Huang, Beilstein. J. Nanotechnol., 10, 1412 (2019). https://doi.org/10.3762/bjnano.10.139
  37. Z. M. Sun, Y. Yan, G. X. Zhang, Z. Y. Wu and S. L. Zheng, Adv. Powder Technol., 26, 595 (2015). https://doi.org/10.1016/j.apt.2015.01.007
  38. O. Mehraj, N. A. Mir, B. M. Pirzada and S. Sabir, Appl. Surf. Sci., 332, 419 (2015). https://doi.org/10.1016/j.apsusc.2015.01.163
  39. L. Ye, J. Liu, C. Gong, L. Tian, T. Peng and L. Zan, ACS Catal., 2, 1677 (2012). https://doi.org/10.1021/cs300213m
  40. R. Zhang, Q. Han, Y. Li, Y. Cai, T. Zhang, Y. Liu and X. Zhu, J. Alloys Compd., 810, 151868 (2019). https://doi.org/10.1016/j.jallcom.2019.151868
  41. J. Yan, Z. Song, X. Wang, Y. Xu, W. Pu, H. Xu, S. Yuan and H. Li, Appl. Surf. Sci., 466, 70 (2019). https://doi.org/10.1016/j.apsusc.2018.09.234
  42. M. Cao, P. Wang, Y. Ao, C. Wang, J. Hou and J. Qian, Int. J. Hydrogen Energy, 40, 1016(2015). https://doi.org/10.1016/j.ijhydene.2014.09.175
  43. W. S. Wang, H. Du, R. X. Wang, T. Wen and A. W. Xu, Nanoscale, 5, 3315 (2013). https://doi.org/10.1039/c3nr00191a