DOI QR코드

DOI QR Code

Toxic Effect of Zinc Undecylenate on the Embryogenesis of Sea Urchins Hemicentrotus pulcherrimus and Mesocentrotus nudus

Zinc Undecylenate가 말똥성게(Hemicentrotus pulcherrimus)와 둥근성게(Mesocentrotus nudus)의 배아발생에 미치는 독성 영향

  • Choi, Hoon (West Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS)) ;
  • Park, Yun-Ho (West Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS)) ;
  • Lee, Ju-Wook (West Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS)) ;
  • Lee, Seung-Min (West Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS)) ;
  • Choi, Youn-Seok (West Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS)) ;
  • Hwang, Un-Ki (West Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS))
  • 최훈 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 박윤호 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 이주욱 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 이승민 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 최윤석 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 황운기 (국립수산과학원 서해수산연구소 해양생태위해평가센터)
  • Received : 2020.10.14
  • Accepted : 2020.10.22
  • Published : 2020.12.16

Abstract

The aim of this study is toxicity assessment using two types of sea urchins (H. pulcherrimus, M. nudus) that can representative primary consumers in potential coastal environments pollutants, Zinc undecylenate (ZU), which is used for various purposes, such as pharmaceutical agents and anti-bacterial and anti-fungi. The Fertilization rate and normal embryogenesis rate of H. pulcherrimus and M. nudus were concentration-dependent decreased. Besides, EC50 of fertilization rate with H. pulcherrimus and M. nudus were 11.27 mgl-1 and 1.48 mgl-1, and EC50 of normal embryogenesis were 0.94 mgl-1 and 3.78 mgl-1. NOEC of normal embryogenesis were 0.20 and 0.78 mgl-1, respectively. In addition, to find the safety criteria of the ZU on the marine environment. PNEC value was 0.0094 mgl-1, calculated using the toxicity values of two species of sea urchin derived from this study and the acute toxicity results of the coastal area through literature research. The above results will be used as basic data for establishing environmental protection strategies for marine environmental pollutants.

본 연구에서는 살균제, 항진균제 등의 의약품을 포함하여 다양한 목적으로 사용되며, 신방오도료로서의 가능성이 확인된 바 있는 Zinc undecylenate (ZU)를 이용해 연안환경 내 1차 소비자를 대표할 수 있는 성게 2종(H. pulcherrimus, M. nudus)에 대한 독성평가를 실시하였다. 실험결과 ZU에 대한 H. pulcherrimus와 M. nudus의 수정률 EC50은, 각각 11.27 mgl-1과 1.48 mgl-1로 나타났다. 또한, 정상배아 발생률의 EC50은 각각 0.94 mgl-1와 3.78 mgl-1로 나타났으며, NOEC는 0.20 mgl-1, 0.78 mgl-1를 나타내었다. 본 연구에서 도출된 성게 2종과 문헌조사를 통한 연안양식생물 2종의 급성독성결과를 이용하여 Predicted No Effect Concentration (PNEC)를 계산하였다. PNEC 값은 0.0094 mgl-1로 나타났으며, 위와 같은 결과는 해양환경 오염물질에 대한 환경보호전략 수립을 위한 기초자료로 활용될 것이다.

Keywords

Acknowledgement

본 논문은 2020년도 국립수산과학원 경상과제(R2020027) 연구비 지원으로 수행하였습니다.

References

  1. Adrislaine SM, Raquel AM, Hugo CD, Lia GRD, Eny MV, Michiel AD, Odete R, Mirna HRS. 2018. Acute and chronic toxicity of diuron and carbofuran to the neotropical cladoceran Ceriodaphnia silvestrii. Environ Sci Pollut Res 25: 13335-13346. https://doi.org/10.1007/s11356-016-8274-9
  2. Agatsuma Y. 2001. Ecology of H. pulcherrimus, Pseudocentrotus depressus, and Anthocidaris crassispina in southern Japan. Edible sea urchins: Biology and Ecology. Elsevier Science, Netherlands. 363-374.
  3. Amara I, Miled W, Slama RB, Ladhari N. 2017. Antifouling processes and toxicity effects of antifouling paints on marine. Environ Toxicol Pharmacol 57: 115-130.
  4. Bourne N, Ireland J, Stanberry LR, Bernstein DI. 1999. Effect of undecylenic acid as a topical microbicide against genital herpes infection in mice and guinea pigs. Antiviral Res 40: 139-144. https://doi.org/10.1016/S0166-3542(98)00055-2
  5. Bigot S, Daghrir M, Mhann A, Boni G, Pourchet S, Lecamp L, Plasseraud L. 2016. Undecylenic acid:A tunable bio-based synthon for materials applications. Eur Polym J 74: 26-37. https://doi.org/10.1016/j.eurpolymj.2015.11.008
  6. Chapman J, Hellio C, Sullivan T, Brown R, Russell S, Kiterringham ENL, Regan F. 2014. Bioinspired synthetic macroalgae: examples from nature for antifouling applications. Int Biodeter Bioddegr 86: 6-13. https://doi.org/10.1016/j.ibiod.2013.03.036
  7. Chen L, Qian PY. 2017. Riview on molecular mechanisms of antifouling compounds: an update since 2012. Mar Drugs 15: 264. https://doi.org/10.3390/md15090264
  8. Choi H, Lee JW, Park YH, Lee SM, Choi YS, Heo S, Hwang UK. 2020. Toxic effects of phenanthrene on fertilization and normal embryogenesis rates of Mesocentrotus nudus and Hemicentrotus pulcherrimus. Korean J Envrion Biol 38: 333-342. https://doi.org/10.11626/KJEB.2020.38.3.333
  9. Chretien JH, Esswein JG, Sharpe LM. 1980. Efficacy of undecylenic acid-zinc undecylenate powder in culture positive tinea pedic. Int J Dermatol 19: 51-54. https://doi.org/10.1111/j.1365-4362.1980.tb01997.x
  10. Cima F, Ballarin L. 2012. Immunotoxicity in ascidians: Antifouling compounds alternative to organotins III - The case of copper (I) and Irgarol 1051. Chemosphere 89: 19-29. https://doi.org/10.1016/j.chemosphere.2012.04.007
  11. Cresswell T, Richards JP, Glegg GA, Readman JW. 2006. The impact of legislation on the usage and environmental concentrations of Irgarol 1051 in UK coastal waters. Mar Pollut Bull 52: 1169-1175. https://doi.org/10.1016/j.marpolbul.2006.01.014
  12. DeLorenzo ME, Fulton MH. 2012. Comparative risk assessment of permethrin, chlorothalonil, and diuron to coastal aquatic species. Mar Pollut Bull 64: 1291-1299. https://doi.org/10.1016/j.marpolbul.2012.05.011
  13. Gu Y, Yu L, Mou J, Wu D, Xu M, Zhou P, Ren Y. 2020. Research Strategies to Develop Environmentally Friendly Marine Anti-fouling Coatings. Mar Drugs 18: 371. https://doi.org/10.3390/md18070371.
  14. Hardman JG, Limbird LE, Gilman AG. 2001. Goodman and Gilman's The Pharmacological Basis of Therapeutics, 10th ed., Pergamon, New York. 1310.
  15. HMSO. Pesticides 1998: reference book 500. London. UK
  16. Holt JS. 1993. Mechanisms and agronomic aspects of herbicide resistance. Ann Rev Plant Physiol Plant Mol Biol 44: 203-229. https://doi.org/10.1146/annurev.pp.44.060193.001223
  17. Hwang UK, Ryu HM, Choi YH, Lee SM, Kang HS. 2011. Effect of cobalt (II) on the fertilization and embryo development of the sea urchin (Hemicentrotus pulcherrimus). Korean J Envrion Biol 29: 251-257.
  18. Hwang UK, Kim DH, Ryu HM, Lee JW, Park SY, Han SK. 2014. Effect of bisphenol A on early embryonic development and the expression of Glutathione S-transferase (GST) in the sea urchin (Hemicentrotus pulcherrimus). Korean J Environ Biol 32: 234-242. https://doi.org/10.11626/KJEB.2014.32.3.234
  19. Hwang UK, Choi H, Park YH, Park NY, Jang SJ, Lee SM, Choi YS, Yang JY, Lee JW. 2018. Toxicity assessment of antifouling agent using the survival and population growth rate of marine rotifer, Brachionus plicatilis. Korean J Environ Biol 36: 392-399. https://doi.org/10.11626/KJEB.2018.36.3.392
  20. Hwang UK, Lee JW, Park YH, Heo S, Choi H. 2020. Toxic effects of antifouling agents (diuron and irgarol) on fertilization and normal embryogenesis rates in the sea urchin (Mesocentrotus nudus). Korean J Environ Biol 38: 207-215. https://doi.org/10.11626/KJEB.2020.38.2.207
  21. Johansson P, Eriksson KM, Axelsson L, Black H. 2012. Effects of seven antifouling compounds on photosynthesis and inorganic carbon use in sugar kelp Saccharina latissima (Linnaeus). Arch Environ Contam Toxicol 63: 365-377. https://doi.org/10.1007/s00244-012-9778-z
  22. Jung SM. 2012. Development of new antifouling systems based on nontoxic self - polishing copolymer coatings. Soon Chun Hyang University.
  23. Karlsson J, Ytreberg E, Eklund B. 2010. Toxicity of anti-fouling paints for use on ships and leisure boats to non-target organisms representing three trophic levels. Environ Pollut 158: 681-687. https://doi.org/10.1016/j.envpol.2009.10.024
  24. Keiler D, Mann T. 1940. Carbonic anhydrase. Purification and nature of the enzyme. Biochemical Journal 34: 1163. https://doi.org/10.1042/bj0341163
  25. Lansdown ABG. 1991. Interspecies variations in response to topical application of selected zinc compounds. Food Chem Toxicol 29: 57-64. https://doi.org/10.1016/0278-6915(91)90063-D
  26. Lee J, Choi H, Park YH, Lee Y, Heo S, Hwang UK. 2019. Toxic evaluation of phenanthrene and zinc undecylenate using the population growth rates of marine diatom, Skeletonema costatum. Korean J Envrion Biol 37: 372-379. https://doi.org/10.11626/KJEB.2019.37.3.372
  27. Lin MC, Wo HL, Kou HS, Wu SM. 2006. Simple fluorimetric liquid chromatographic method for the analysis of undecylenic acid and zinc undecylenate in pharmaceutical preparations. Journal of Chromatography A 1119: 264-269. https://doi.org/10.1016/j.chroma.2005.10.058
  28. Manzo S, Buono S, Cremisini C. 2006. Toxic effects of Irgarol and Diuron on sea urchin Paracentrotus lividus Early Development, fertilization, and offspring quality. Arch Environ Contam Toxicol 51: 61-68. https://doi.org/10.1007/s00244-004-0167-0
  29. Ministry of Environment. 2016. Guidelines for procedure and methodology for risk assessment of environmental hazardous factors. Established rule-585.
  30. Mosmeri H, Bahrami A, Ghafari MD, Jazaeri K. 2019. Increasing in the Extraction Yield of Environmentally Friendly Antifouling Agent from Pseudomonas Aeruginosa MUT3 by Response Surface Methodology (RSM). Iran J Chem Chem Eng 38: 203-214.
  31. Nacci D, Jackim E, Walsh R. 1986. Comparative evaluation of three rapid marine toxicity tests: Sea urchin early embryo growth test, Sea urchin sperm cell toxicity test and microtox. Environ Toxicol Chem 5: 521-525. https://doi.org/10.1002/etc.5620050603
  32. Nikolov A, Ganchev D. 2010. Effect of zinc undecylenates on plant pathogenic fungi. Bulg J Agric Sci 16: 220-226.
  33. OSPAR. 2010. Assessment of the Impact of Shipping on the Marine Environment. Quality Status Report 2010. OSPAR Commission, London, UK.
  34. Ryu TK, Kim JK, Kim KT, Lee JW, Kim JE, Cho JG, Yoon JH, Lee JA, Kim PJ, Ryu JS. 2018. Encironmental risk assessment for Invermectin, Praziquantel, Tamiflu and Triclosan. J Environ Health Sci 44: 196-203.
  35. Thomas KV. 2001. The environmental fate and behaviour of antifouling paint booster biocides. Biofouling 17: 73-86. https://doi.org/10.1080/08927010109378466
  36. Voulvoulis N, Scrimshaw MD, Lester JN. 2000. Occurrence of four biocides utilized in antifouling paints, as alternatives to organotin compounds, in waters and sediments of a commercial estuary in the UK. Mar Pol Bullt 40: 938-946. https://doi.org/10.1016/S0025-326X(00)00034-5
  37. Voulvoulis N, Scrimshaw MD, Lester JN. 2002, Comparative environmental assessment of biocides used in antifouling paints. Chemosphere 47: 789-795. https://doi.org/10.1016/S0045-6535(01)00336-8
  38. Yamada H. 2007. Behaviour, occurrence, and aquatic toxicity of new antifouling biocides and preliminary assessment of risk to aquatic ecosystems. Bull Fish Res Agen 21: 31-45.
  39. Yang IM, Kang MJ, Kim SM, Kim HA. 2020. Assessing the reliability on anti-fouling and the seawater-erosion of siliconebased anti-fouling coating. Journal of Applied Reliability 20: 63-71. https://doi.org/10.33162/JAR.2020.3.20.1.63
  40. Yonehara Y. 2000. Recent topics on marine antifouling coatings. Bull Soc Sea Water Sci Jpn 54: 7-12.
  41. Yu CM. 1998. A study on the effect of heavy metals on embryos formation of sea urchins. Kor J Env Hlth Soc 24: 6-10.
  42. Ytreberg E, Karlsson J, Eklund B. 2010. Comparison of toxicity and release rates of Cu and Zn from anti-fouling paints leached in natural and artificial brackish seawater. Sci Total Environ 408: 2459-2466. https://doi.org/10.1016/j.scitotenv.2010.02.036