DOI QR코드

DOI QR Code

Terminal solid solubility of hydrogen of optimized-Zirlo and its effects on hydride reorientation mechanisms under dry storage conditions

  • Received : 2019.08.20
  • Accepted : 2020.01.19
  • Published : 2020.08.25

Abstract

TSSD, TSSP, and TSSP2 of hydrogen for optimized-Zirlo (Zirlo™) alloy were measured by DSC in the range of 53-457 wppm. Solvus curves of the TSSs are derived and proposed in this study. The results show that the temperature gap between TSSD and TSSP solvus lines of Zirlo™ are similar to those of other zirconium alloys, but another gap between the TSSD and TSSP2 line differs significantly. In particular, the TSSP2 solvus line becomes closer to the TSSD solvus line than to TSSP unlike Zircaloy-4, so ΔTTSSD-TSSP2 of Zirlo™ decreases with decreasing temperature. This implies that hydride reorientation can take place more significantly in Zirlo™ than in Zircaloy-4, and the limited temperature variation of 65 ℃ during the vacuum drying and the cooling-down process may not be sufficient to prevent the triggering of hydride reorientation in Zirlo™ cladding under long-term dry storage.

Keywords

References

  1. J.J. Kearns, Terminal solubility and partitioning of hydrogen in the alpha phase of zirconium, Zircaloy-2 and Zircaloy-4, J. Nucl. Mater. 22 (3) (1967) 292-303. https://doi.org/10.1016/0022-3115(67)90047-5
  2. A. Sawatzky, The diffusion and solubility of hydrogen in the alpha phase of zircaloy-2, J. Nucl. Mater. 2 (1) (1960) 62-68. https://doi.org/10.1016/0022-3115(60)90025-8
  3. W.H. Erickson, D. Hardie, The influence of alloying elements on the terminal solubility of hydrogen in ${\alpha}$-zirconium, J. Nucl. Mater. 13 (2) (1964) 254-262. https://doi.org/10.1016/0022-3115(64)90046-7
  4. H.C. Chu, S.K. Wu, R.C. Kuo, Hydride reorientation in Zircaloy-4 cladding, J. Nucl. Mater. 373 (1-3) (2008) 319-327. https://doi.org/10.1016/j.jnucmat.2007.06.012
  5. J.-S. Kim, Y.-J. Kim, D.-H. Kook, Y.-S. Kim, A study on hydride reorientation of Zircaloy-4 cladding tube under stress, J. Nucl. Mater. 456 (2015) 246-252, 0. https://doi.org/10.1016/j.jnucmat.2014.09.032
  6. J.-S. Kim, T.-H. Kim, D.-H. Kook, Y.-S. Kim, Effects of hydride morphology on the embrittlement of Zircaloy-4 cladding, J. Nucl. Mater. 456 (2015) 235-245, 0. https://doi.org/10.1016/j.jnucmat.2014.09.025
  7. Y.-J. Kim, D.-H. Kook, T.-H. Kim, J.-S. Kim, Stress and temperature-dependent hydride reorientation of Zircaloy-4 cladding and its effect on the ductility degradation, J. Nucl. Sci. Technol. 52 (5) (2015) 717-727. https://doi.org/10.1080/00223131.2014.978829
  8. M.C. Billone, T.A. Burtseva, R.E. Einziger, Ductile-to-brittle transition temperature for high-burnup cladding alloys exposed to simulated drying-storage conditions, J. Nucl. Mater. 433 (1-3) (2013) 431-448. https://doi.org/10.1016/j.jnucmat.2012.10.002
  9. M. Aomi, T. Baba, T. Miyashita, K. Kamimura, T. Yasuda, Y. Shinohara, T. Takeda, Evaluation of Hydride Reorientation Behavior and Mechanical Properties for High-Burnup Fuel-Cladding Tubes in Interim Dry Storage, vol. 1505, ASTM special technical publication, 2009, pp. 651-673.
  10. H.-J. Cha, K.-N. Jang, J.-H. An, K.-T. Kim, The effect of hydrogen and oxygen contents on hydride reorientations of zirconium alloy cladding tubes, Nucl. Eng. Technol 47 (6) (2015) 746-755. https://doi.org/10.1016/j.net.2015.06.004
  11. C. Coleman, V. Inozemtsev, V. markelov, R. Roth, A.-M. Alvare-Holston, L. Ramanathan, Z. He, J.K. Chakravartty, V. Makarevicius, L. Ali, The threshold stress-intensity factor, KIH, for delayed hydride cracking (DHC) in zircaloy-4 fuel cladding- an IAEA coordinated research project (CRP), in: Proceeding of Water Reactor Fuel Performance Meeting 2014 Sendai, Japan, 2014. Sept 14-17, 2014, Paper No. 100048.
  12. A.-M. Alvarez Holston, J. Stjarnsater, On the effect of temperature on the threshold stress intensity factor of delayed hydride cracking in light water reactor fuel cladding, Nucl. Eng. Technol 49 (4) (2017) 663-667. https://doi.org/10.1016/j.net.2017.04.002
  13. Y.S. Kim, Delayed hydride cracking of spent fuel rods in dry storage, J. Nucl. Mater. 378 (1) (2008) 30-34. https://doi.org/10.1016/j.jnucmat.2008.04.011
  14. K.S. Chan, An assessment of delayed hydride cracking in zirconium alloy cladding tubes under stress transients, Int. Mater. Rev. 58 (6) (2013) 349-373. https://doi.org/10.1179/1743280412Y.0000000013
  15. J.-S. Kim, J.-D. Hong, Y.-S. Yang, D.-H. Kook, Rod internal pressure of spent nuclear fuel and its effects on cladding degradation during dry storage, J. Nucl. Mater. 492 (2017) 253-259. https://doi.org/10.1016/j.jnucmat.2017.05.047
  16. M.P. Puls, The effects of misfit and external stresses on terminal solid solubility in hydride-forming metals, Acta Metall. 29 (12) (1981) 1961-1968. https://doi.org/10.1016/0001-6160(81)90033-X
  17. Z.L. Pan, I.G. Ritchie, M.P. Puls, The terminal solid solubility of hydrogen and deuterium in Zr-2.5Nb alloys, J. Nucl. Mater. 228 (2) (1996) 227-237. https://doi.org/10.1016/S0022-3115(95)00217-0
  18. G.F. Slattery, The terminal solubility of hydrogen in the zirconium/2 at % chromium/0.16 at % iron alloy, J. Nucl. Mater. 32 (1) (1969) 30-38. https://doi.org/10.1016/0022-3115(69)90139-1
  19. A. McMinn, E.C. Darby, J.S. Schofield, Terminal Solid Solubility of Hydrogen in Zirconium Alloys, vol. 1354, ASTM special technical publication, 2000, pp. 173-195.
  20. Z.L. Pan, M.P. Puls, Precipitation and dissolution peaks of hydride in Zr-2.5Nb during quasistatic thermal cycles, J. Alloys Compd. 310 (1-2) (2000) 214-218. https://doi.org/10.1016/S0925-8388(00)01028-8
  21. Y. Kim, S. Choi, Y. Cheong, Review of the initiation and arrest temperatures for delayed hydride cracking in zirconium alloys, Met. Mater. Int. 11 (1) (2005) 39-47. https://doi.org/10.1007/BF03027482
  22. S.Q. Shi, G.K. Shek, M.P. Puls, Hydrogen concentration limit and critical temperatures for delayed hydride cracking in zirconium alloys, J. Nucl. Mater. 218 (2) (1995) 189-201. https://doi.org/10.1016/0022-3115(94)00405-6
  23. M.P. Puls, Review of the thermodynamic basis for models of delayed hydride cracking rate in zirconium alloys, J. Nucl. Mater. 393 (2) (2009) 350-367. https://doi.org/10.1016/j.jnucmat.2009.06.022
  24. M.P. Puls, Comments on author's reply to "Review of the thermodynamic basis for models of delayed hydride cracking rate in zirconium alloys", M.P. Puls in J. Nucl. Mater. 393 (2009) 350-367, J. Nucl. Mater. 399 (2-3) (2010) 248-258. https://doi.org/10.1016/j.jnucmat.2010.01.026
  25. Y.S. Kim, Author's reply to "Review of the thermodynamic basis for models of delayed hydride cracking rate in zirconium alloys, M.P. Puls in J. Nucl. Mater. 393 (2009) 350-367", J. Nucl. Mater. 399 (2-3) (2010) 240-247. https://doi.org/10.1016/j.jnucmat.2009.12.001
  26. Y.S. Kim, Author's 2nd reply to comments on author's reply to "Review of the thermodynamic basis for models of delayed hydride cracking rate in zirconium alloys," M.P. Puls in J. Nucl. Mater. 393 (2009) 350-367, J. Nucl. Mater. 399 (2-3) (2010) 259-265. https://doi.org/10.1016/j.jnucmat.2010.02.015
  27. Y.S. Kim, Comments on the DuttonePuls model: temperature and yield stress dependences of crack growth rate in zirconium alloys, Mater. Sci. Eng., A 527 (29-30) (2010) 7480-7483. https://doi.org/10.1016/j.msea.2010.07.100
  28. G.A. McRae, C.E. Coleman, B.W. Leitch, The first step for delayed hydride cracking in zirconium alloys, J. Nucl. Mater. 396 (1) (2010) 130-143. https://doi.org/10.1016/j.jnucmat.2009.08.019
  29. J.-S. Kim, Y.-S. Kim, Effect of thermal history on the terminal solid solubility of hydrogen in Zircaloy-4, Int. J. Hydrogen Energy 39 (29) (2014) 16442-16449. https://doi.org/10.1016/j.ijhydene.2014.08.018
  30. D. Khatamian, Z.L. Pan, M.P. Puls, C.D. Cann, Hydrogen solubility limits in Excel, an experimental zirconium-based alloy, J. Alloys Compd. 231 (1-2) (1995) 488-493. https://doi.org/10.1016/0925-8388(95)01867-0
  31. K. Une, S. Ishimoto, Dissolution and precipitation behavior of hydrides in Zircaloy-2 and high Fe Zircaloy, J. Nucl. Mater. 322 (1) (2003) 66-72. https://doi.org/10.1016/S0022-3115(03)00320-9
  32. K. Une, S. Ishimoto, Terminal solid solubility of hydrogen in unalloyed zirconium by differential scanning calorimetry, J. Nucl. Sci. Technol. 41 (9) (2004) 949-952. https://doi.org/10.3327/jnst.41.949
  33. J.P. Giroldi, P. Vizcaino, A.V. Flores, A.D. Banchik, Hydrogen terminal solid solubility determinations in Zr-2.5Nb pressure tube microstructure in an extended concentration range, J. Alloys Compd. 474 (1-2) (2009) 140-146. https://doi.org/10.1016/j.jallcom.2008.06.104
  34. I.G. Ritchie, Z.L. Pan, Internal friction and young's modulus measurements in Zr-2.5Nb alloy doped with hydrogen, ASTM Spec. Tech. Publ. 1169 (1992) 385-395.
  35. O. Zanellato, M. Preuss, J.Y. Buffiere, F. Ribeiro, A. Steuwer, J. Desquines, J. Andrieux, B. Krebs, Synchrotron diffraction study of dissolution and precipitation kinetics of hydrides in Zircaloy-4, J. Nucl. Mater. 420 (1-3) (2012) 537-547. https://doi.org/10.1016/j.jnucmat.2011.11.009
  36. K.B. Colas, A.T. Motta, M.R. Daymond, J.D. Almer, Effect of thermo-mechanical cycling on zirconium hydride reorientation studied in situ with synchrotron X-ray diffraction, J. Nucl. Mater. 440 (1-3) (2013) 586-595. https://doi.org/10.1016/j.jnucmat.2013.04.047
  37. O.F. Courty, A.T. Motta, C.J. Piotrowski, J.D. Almer, Hydride precipitation kinetics in Zircaloy-4 studied using synchrotron X-ray diffraction, J. Nucl. Mater. 461 (2015) 180-185, 0. https://doi.org/10.1016/j.jnucmat.2015.02.035
  38. R. Tang, X. Yang, Dissolution and precipitation behaviors of hydrides in N18, Zry-4 and M5 alloys, Int. J. Hydrogen Energy 34 (17) (2009) 7269-7274. https://doi.org/10.1016/j.ijhydene.2009.07.018
  39. J.G. Bang, J.H. Baek, Y.H. Jeong, P07G24 determination of terminal solid solubility of hydrogen in zirconium alloys, Korean Nuclear Society 2004 (2004) 1028-1032.
  40. D. Khatamian, DSC "peak temperature" versus "maximum slope temperature" in determining TSSD temperature, J. Nucl. Mater. 405 (2) (2010) 171-176. https://doi.org/10.1016/j.jnucmat.2010.08.010
  41. D. Khatamian, Effect of ${\beta}$-Zr decomposition on the solubility limits for H in Zr-2.5Nb, J. Alloys Compd. 356-357 (2003) 22-26. https://doi.org/10.1016/S0925-8388(03)00094-X
  42. S.A. Parodi, L.M.E. Ponzoni, M.E. De Las Heras, J.I. Mieza, G. Domizzi, Study of variables that affect hydrogen solubility in ${\alpha}+{\beta}$ Zr-alloys, J. Nucl. Mater. 477 (2016) 305-317. https://doi.org/10.1016/j.jnucmat.2016.05.027
  43. D.J. Cameron, R.G. Duncan, On the existence of a memoty effect in hydride precipitation in cold-worked Zr-2.5% Nb, J. Nucl. Mater. 68 (3) (1977) 340-344. https://doi.org/10.1016/0022-3115(77)90260-4
  44. G.J.C. Carpenter, The dilatational misfit of zirconium hydrides precipitated in zirconium, J. Nucl. Mater. 48 (3) (1973) 264-266. https://doi.org/10.1016/0022-3115(73)90022-6
  45. G.J.C. Carpenter, J.F. Watters, R.W. Gilbert, Dislocations generated by zirconium hydride precipitates in zirconium and some of its alloys, J. Nucl. Mater. 48 (3) (1973) 267-276. https://doi.org/10.1016/0022-3115(73)90023-8
  46. G.J.C. Carpenter, J.F. Watters, An in-situ study of the dissolution of ${\gamma}$-zirconium hydride in zirconium, J. Nucl. Mater. 73 (2) (1978) 190-197. https://doi.org/10.1016/0022-3115(78)90559-7
  47. J.-S. Kim, S.-D. Kim, J. Yoon, Hydride formation on deformation twin in zirconium alloy, J. Nucl. Mater. 482 (2016) 88-92. https://doi.org/10.1016/j.jnucmat.2016.10.020
  48. G.F. Slattery, The terminal solubility of hydrogen in zirconium alloys between 30 and $400^{\circ}C$, J. Inst. Met. 95 (1967) 43-47.
  49. M. Ito, K. Ko, H. Muta, M. Uno, S. Yamanaka, Effect of Nb addition on the terminal solid solubility of hydrogen for Zr and Zircaloy-4, J. Alloys Compd. 446-447 (2007) 451-454. https://doi.org/10.1016/j.jallcom.2007.01.084
  50. M.C. Billone, T.A. Burtseva, Effects of Lower Drying-Storage Temperature on the Ductility of High-Burnup PWR Cladding, Argonne National Lab. (ANL), Argonne, IL (United States), 2016, pp. 1-94.
  51. U.S. Nuclear Regulatory Commission (NRC), Interim Staff Guidance-11, 2003. Revision 3.
  52. B.G. Kammenzind, D.G. Franklin, H.R. Peters, W.J. Duffin, Hydrogen Pickup and Redistribution in Alpha-Annealed Zircaloy-4, vol. 1295, ASTM special technical publication, 1996, pp. 338-369.
  53. H.E. Weekes, N.G. Jones, T.C. Lindley, D. Dye, Hydride reorientation in Zircaloy-4 examined by in situ synchrotron X-ray diffraction, J. Nucl. Mater. 478 (2016) 32-41. https://doi.org/10.1016/j.jnucmat.2016.05.029
  54. P. Vizcaino, J.R. Santisteban, M.A. Vicente Alvarez, A.D. Banchik, J. Almer, Effect of crystallite orientation and external stress on hydride precipitation and dissolution in Zr2.5%Nb, J. Nucl. Mater. 447 (1-3) (2014) 82-93. https://doi.org/10.1016/j.jnucmat.2013.12.025

Cited by

  1. Hydride embrittlement resistance of Zircaloy-4 and Zr-Nb alloy cladding tubes and its implications on spent fuel management vol.559, 2020, https://doi.org/10.1016/j.jnucmat.2021.153393
  2. Accurate prediction of threshold stress for hydride reorientation in Zircaloy-4 with directly measured interface orientation relationship vol.21, 2020, https://doi.org/10.1016/j.mtla.2021.101291