DOI QR코드

DOI QR Code

단일연소관 이중추력 로켓모터의 내탄도성능 분석법 연구

Study on Internal Ballistic Performance Analysis for Single-chamber Dual-thrust Rocket Motors

  • Kwon, Hyeokmin (The 4th R&D Institute - 1st Directorate, Agency for Defense Development)
  • 투고 : 2020.05.02
  • 심사 : 2020.06.28
  • 발행 : 2020.08.31

초록

본 연구에서는 추진제 연소면적을 조절하여 이중추력 프로파일을 구현하는 단일연소관 이중추력 로켓모터의 내탄도성능 분석 방법을 제시한다. 천이 구간에서의 연소속도 보정계수 및 비추력의 점진적 변화를 고려하며 성능 예측에 필요한 변수를 획득할 수 있는 분석법을 제시하고, 해당 분석법을 적용한 결과와 천이 구간 내 변화를 고려하지 않는, 기존 연구의 분석법을 적용한 결과를 비교함으로써 새로 제시하는 분석법에서 개선된 부분을 확인한다. 추진제 초기 온도 또는 배치 조건이 다른 네 가지의 시험 조건에 대하여 제시하는 분석법을 이용해 내탄도 변수를 획득하고, 이를 이용하여 각 시험 조건별로 성능 예측을 수행한다. 해당 예측 결과는 실제 연소시험 결과와 잘 일치하며, 따라서 본 연구의 분석법을 기반으로 설계 형상이 동일한 이중추력 모터의 성능 예측이 가능함을 확인할 수 있다.

In this study, study on the internal ballistic analysis method for single-chamber dual-thrust rocket motors meeting a dual-thrust profile requirement by tailoring the grain burning area is presented. The analysis method, which can acquire variables required for the performance prediction, considering gradual change of burning rate correction factor and specific impulse in the transition phase, is proposed. Improvements compared to the analysis method in the previous study, which do not consider change in the transition phase, are verified through comparison between the newly proposed method and the method in the previous study. Internal ballistic variables are obtained for four different ground firing test conditions using the proposed method, and the performance prediction for each condition is conducted using these variables. These prediction results and the ground test data are in good agreement, so it is confirmed that the performance prediction of dual-thrust motors with same design geometries based on the proposed analysis method is available.

키워드

참고문헌

  1. NASA, "Solid Propellant Grain Design and Internal Ballistics," NASA SP 8076, 1972.
  2. Sung, H.G., Kim, J.R., Choi, Y.G. and Hwang, K., "A Study on Single Chamber Dual Thrust Solid Rocket Motor," KSAS 1989 Spring Conference, Korea, pp. 163-166, April 1989.
  3. El-Nady, A.M., Ahmed, M.Y.M., El-Senbawy, M.A. and Sarhan, A.M., "Experimental and Theoretical Study on a Dual-thrust Rocket Motor with Subsonic Intermediate Nozzle," Journal of Aerospace Engineering, Vol. 232, No. 10, pp. 1844- 1852, 2018.
  4. Kim, H. and Moon, K., "Internal Ballistic Analysis using Two Kinds of Propellant for Design of Dual-thrust Solid Rocket Motor," 2017 KSPE Spring Conference, Jeju, Korea, pp. 1176-1179, May 2017.
  5. Gawad, A.R.A., Ahmed, M.Y.M., Abdalla, H.M. and El-Senbawy, M.A., "Pressure Profile Prediction of Dual-thrust Rocket Motors under Uncertainties," Propellants, Explosives, Pyrotechnics, Vol. 41, pp. 965-971, 2016. https://doi.org/10.1002/prep.201500329
  6. Lee, D.H., "A Study on the Performance Prediction Technique of the Dual-thrust Rocket Motor," Journal of the Korean Society of Propulsion Engineers, Vol. 5, No. 2, pp. 38-43, 2001.
  7. Raza, M.A. and Liang, W., "Design and Optimization of 3D Wagon Wheel Grain for Dual Thrust Solid Rocket Motors," Propellants, Explosives, Pyrotechnics, Vol. 38, pp. 67-74, 2013. https://doi.org/10.1002/prep.201100104
  8. Raza, M.A. and Liang, W., "Robust Design Optimization of Dual Thrust Solid Propellant Motors due to Burning Rate Uncertainties," Propellants, Explosives, Pyrotechnics, Vol. 37, pp. 476-488, 2012. https://doi.org/10.1002/prep.201100060
  9. Kurva, R., Ukey, S., Modgi, M. and Mehilal, "Experimental Approaches to Develop a High Thrust Ratio in a Single Chamber Dual Thrust Motor Using a Composite Propellant Formulation based on HTPB/AP/Al," Central European Journal of Energetic Materials, Vol. 14, No. 4, pp. 917-932, 2017. https://doi.org/10.22211/cejem/76704
  10. Kumar, V.R.S., Raghunandan, B.N., Kawakami, T., Kim, H.D., Setoguchi, T. and Raghunathan, S., "Boundary-layer Effects on Internal Flow Choking in Dual-thrust Solid Rocket Motors," Journal of Propulsion and Power, Vol. 24, No. 2, pp. 224-235, 2008. https://doi.org/10.2514/1.30649
  11. Lee, D.H., Yoon, M.W. and Hwang, K., "Development of the Dual-thrust Rocket Motor," Journal of the Korean Society of Aeronautical and Space Sciences, Vol. 32, No. 9, pp. 130-135, 2004. https://doi.org/10.5139/JKSAS.2004.32.9.130
  12. Sung, H.G., Byun, J.R. and Kim, Y.G., "A Study on the Determination of the Performance Correction Factors of Solid Rocket Motors," Journal of the Korean Society of Propulsion Engineers, Vol. 5, No. 4, pp. 57-66, 2001.
  13. Sutton, G.P. and Biblarz, O., Rocket Propulsion Elements, 9th ed., John Wiley & Sons, Inc., Hoboken, N.J., U.S.A., Ch. 3, 2017.
  14. Fry, R.S., "Solid Propellant Test Motor Scaling," CPTR 73, 2001.
  15. NASA, "Solid Rocket Motor Performance Analysis and Prediction," NASA SP 8039, 1971.
  16. Gordon, S. and McBride, B.J., "Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications: I. Analysis," NASA RP 1311, 1994.
  17. Gordon, S. and McBride, B.J., "Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications: II. User Manual and Program Description," NASA RP 1311, 1996.
  18. Jung, S., Won, J., Choi, Y., Hwang, H. and Yoo, K., "Review of Solid Propellant Continuous Mix Process," 2007 KSPE Spring Conference, Seoul, Korea, pp. 197-200, April 2007.
  19. Fang, S., Hu, K., Zhang, P. and Ma, Z., "A New Simulation Method for 3-D Propellant Grain Burn Analysis of Solid Rocket Motor," 30th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Indianapolis, I.N., AIAA 94-3331, June 1994.