DOI QR코드

DOI QR Code

Heterologous Expression of Recombinant Transglutaminase in Bacillus subtilis SCK6 with Optimized Signal Peptide and Codon, and Its Impact on Gelatin Properties

  • Wang, Shiting (Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education) ;
  • Yang, Zhigang (Chengdu Jinkai Bioengineering Co., Ltd.) ;
  • Li, Zhenjiang (Chengdu Jinkai Bioengineering Co., Ltd.) ;
  • Tian, Yongqiang (Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education)
  • Received : 2020.02.26
  • Accepted : 2020.04.19
  • Published : 2020.07.28

Abstract

Microbial transglutaminases (MTGs) are widely used in the food industry. In this study, the MTG gene of Streptomyces sp. TYQ1024 was cloned and expressed in a food-grade bacterial strain, Bacillus subtilis SCK6. Extracellular activity of the MTG after codon and signal peptide (SP Ync M) optimization was 20 times that of the pre-optimized enzyme. After purification, the molecular weight of the MTG was 38 kDa and the specific activity was 63.75 U/mg. The optimal temperature and pH for the recombinant MTG activity were 50℃ and 8.0, respectively. MTG activity increased 1.42-fold in the presence of β-ME and 1.6-fold in the presence of DTT. Moreover, 18% sodium chloride still resulted in 83% enzyme activity, which showed good salt tolerance. Cross-linking gelatin with the MTG increased the strength of gelatin 1.67 times and increased the thermal denaturation temperature from 61.8 to 75.8℃. The MTG also significantly increased the strength and thermal stability of gelatin. These characteristics demonstrated the huge commercial potential of MTG, such as for applications in salted protein foods.

Keywords

References

  1. Lorand L, Graham RM. 2003. Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat. Rev. Mol. Cell Biol. 4: 140-156. https://doi.org/10.1038/nrm1014
  2. Yokoyama K, Nio N, Kikuchi Y. 2004. Properties and applications of microbial transglutaminase. Appl. Microbiol. Biotechnol. 64: 447-454. https://doi.org/10.1007/s00253-003-1539-5
  3. Liu S, Wan D, Wang M. 2015. Overproduction of pro-transglutaminase from Streptomyces hygroscopicus in Yarrowia lipolytica and its biochemical characterization. BMC Biotechnol. 15: 75. https://doi.org/10.1186/s12896-015-0193-1
  4. Duran R, Junqua M, Schmitter JM. 1998. Purification, characterisation, and gene cloning of transglutaminase from Streptoverticillium cinnamoneum CBS 683.68. Biochimie 80: 313-319. https://doi.org/10.1016/S0300-9084(98)80073-4
  5. Ando H, Adachi M, Umeda K, Matsuura A, Nonaka M, Uchio R. 1989. Purification and characteristics of a novel transglutaminase derived from microorganisms. Agric. Biol. Chem. 53: 2613-2617. https://doi.org/10.1271/bbb1961.53.2613
  6. Casadio R, Polverini E, Mariani P, Spinozzi F. 1999. The structural basis for the regulation of tissue transglutaminase by calcium ions. Eur. J. Biochem. 262: 672-679. https://doi.org/10.1046/j.1432-1327.1999.00437.x
  7. Kobayashi K, Suzuki SI, Izawa Y, Miwa K, Yamanaka S. 1998. Transglutaminase in sporulating cells of Bacillus subtilis. J. Gen. Appl. Microbiol. 44: 85-91. https://doi.org/10.2323/jgam.44.85
  8. Sorde KL, Ananthanarayan L. 2019. Isolation, screening, and optimization of bacterial strains for novel transglutaminase production. Prep. Biochem. Biotechol. 49: 64-73. https://doi.org/10.1080/10826068.2018.1536986
  9. Zhu Y, Tramper J. 2008. Novel applications for microbial transglutaminase beyond food processing. Trends Biotechnol. 26: 559-565. https://doi.org/10.1016/j.tibtech.2008.06.006
  10. Zotzel J, Keller P, Fuchsbauer HL. 2003. Transglutaminase from Streptomyces mobaraensis is activated by an endogenous metalloprotease. Eur. J. Biochem. 270: 3214-3222. https://doi.org/10.1046/j.1432-1033.2003.03703.x
  11. Washizu K, Ando K, Koikeda S. 1994. Molecular cloning of the gene for microbial transglutaminase from Streptoverticillium and its expression in Streptomyces lividans. Biosci. Biotechnol. Biochem. 58: 82-87. https://doi.org/10.1271/bbb.58.82
  12. Kikuchi Y, Date M, Yokoyama KI. 2003. Secretion of active-form Streptoverticillium mobaraense transglutaminase by Corynebacterium glutamicum: Processing of the pro-transglutaminase by a cosecreted subtilisin-like protease from Streptomyces albogriseolus. Appl. Environ. Microbiol. 69: 358-366. https://doi.org/10.1128/AEM.69.1.358-366.2003
  13. Yang HL, Pan L, Lin Y. 2009. Purification and on-column activation of a recombinant histidine-tagged pro-transglutaminase after soluble expression in Escherichia coli. Biosci. Biotechnol. Biochem. 73: 2531-2534. https://doi.org/10.1271/bbb.90422
  14. Liu S, Zhang DX, Wang M. 2011. The order of expression is a key factor in the production of active transglutaminase in Escherichia coli by co-expression with its pro-peptide. Microb. Cell Fact. 10: 112-120. https://doi.org/10.1186/1475-2859-10-112
  15. Noda S, Miyazaki T, Tanaka T. 2013. High-level production of mature active-form Streptomyces mobaraensis transglutaminase via pro-transglutaminase processing using Streptomyces lividans as a host. Biochem. Eng. J. 74: 76-80. https://doi.org/10.1016/j.bej.2013.02.011
  16. Yurimoto H, Yamane M, Kikuchi Y. 2014. The pro-peptide of streptomyces mobaraensis transglutaminase functions in cis and in trans to mediate efficient secretion of active enzyme from methylotrophic yeasts. Biosci. Biotech. Biochem. 68: 2058-2069. https://doi.org/10.1271/bbb.68.2058
  17. Date M, Yokoyama KI, Umezawa Y. 2004. High level expression of Streptomyces mobaraensis transglutaminase in Corynebacterium glutamicum using a chimeric pro-region from Streptomyces cinnamoneus transglutaminase. J. Biotechnol. 110: 219-226. https://doi.org/10.1016/j.jbiotec.2004.02.011
  18. Shaista B, Saima S, Sajjad A. 2015. Enhanced and secretory expression of human granulocyte colony stimulating factor by Bacillus subtilis SCK6. BioMed. Res. Int. 2015: 1-9.
  19. Simonen M, Palva I. 1993. Protein secretion in Bacillus species. Microbiol. Rev. 57: 109-137. https://doi.org/10.1128/MMBR.57.1.109-137.1993
  20. Fu LL, Xu ZR, Li WF. 2007. Protein secretion pathways in Bacillus subtilis: implication for optimization of heterologous protein secretion. Biotechnol Adv. 25: 1-12. https://doi.org/10.1016/j.biotechadv.2006.08.002
  21. Tian JW, Long XF, Tian YQ. 2019. Enhanced extracellular recombinant keratinase activity in Bacillus subtilis SCK6 through signal peptide optimization and site-directed mutagenesis. RSC Adv. 9: 33337-33344. https://doi.org/10.1039/C9RA07866E
  22. Fu G, Liu J, Li J. 2018. Systematic screening of optimal signal peptides for secretory production of heterologous proteins in Bacillus subtilis. J. Agr. Food Chem. 66: 13141-13151. https://doi.org/10.1021/acs.jafc.8b04183
  23. Liu S, Wang M, Du G. 2016. Improving the active expression of transglutaminase in Streptomyces lividans by promoter engineering and codon optimization. BMC Biotechnol. 16: 75. https://doi.org/10.1186/s12896-016-0304-7
  24. Tian JW, Xu Z, Long XF, Tian YQ. 2019. High-expression keratinase by Bacillus subtilis SCK6 for enzymatic dehairing of goatskins. Int. J. Biol. Macromol. 135: 119-126. https://doi.org/10.1016/j.ijbiomac.2019.05.131
  25. Li WJ, Xu P, Schumann P. 2007. Georgenia ruanii sp. nov., a novel actinobacterium isolatedfrom forest soil inYunnan(China), and emended description of the genus Georgenia, Int. J. Syst. Evol. Micr. 57: 1424-1428. https://doi.org/10.1099/ijs.0.64749-0
  26. Zhang XZ, Zhang YHP. 2011. Simple, fast and high-efficiency transformation system for directed evolution of cellulase in Bacillus subtilis. Microb. Biotechnol. 4: 98-105. https://doi.org/10.1111/j.1751-7915.2010.00230.x
  27. Folk JE, Cole PW. 1966. Mechanism of action of guinea pig liver transglutaminase. J. Biol. Chem. 241: 5518-5525. https://doi.org/10.1016/S0021-9258(18)96373-8
  28. Liu S, Zhang DX. 2011. The pro-region of Streptomyces hygroscopicus transglutaminase affects its secretion by Escherichia coli. FEMS Microbiol. Lett. 324: 98-105. https://doi.org/10.1111/j.1574-6968.2011.02387.x
  29. Binnie C, Cossar JD, Stewart DIH. 1997. Heterologous biopharmaceutical protein expression in Streptomyces. Trends Biotechnol. 15: 315-320. https://doi.org/10.1016/S0167-7799(97)01062-7
  30. Yokoyama KI, Nakamura N, Seguro K. 2000. Overproduction of microbial transglutaminase in Escherichia coli, in vitro refolding, and characterization of the refolded form. Biosci. Biotechnol. Biochem. 64: 1263-1270. https://doi.org/10.1271/bbb.64.1263
  31. Lin YS, Chao ML, Liu CH. 2006. Cloning of the gene coding for transglutaminase from Streptomyces platensis and its expression in Streptomyces lividans. Process Biochem. 41: 519-524. https://doi.org/10.1016/j.procbio.2005.09.009
  32. Chaudhari. 2017. Non-covalent conjugation of cutinase from Fusarium sp. ICT SAC1 with pectin for enhanced stability: Process minutiae, kinetics, thermodynamics and structural study. Int. J. Biol. Macromol. 102: 729-740. https://doi.org/10.1016/j.ijbiomac.2017.04.072
  33. Cui L, Du G, Zhang D. 2007. Purification and characterization of transglutaminase from a newly isolated Streptomyces hygroscopicus. Food Chem. 105: 612-618. https://doi.org/10.1016/j.foodchem.2007.04.020
  34. Anulak, Worratato, Jirawat. 2003. Cross-linking of actomyosin by crude tilapia (oreochromis niloticus) transglutaminase. J. Food Biochem. 27: 35-51. https://doi.org/10.1111/j.1745-4514.2003.tb00265.x
  35. Cardoso C, Rogerio Mendes, Vaz-Pires P. 2010. Effect of salt and MTGase on the production of high quality gels from farmed sea bass. J. Food Eng. 101: 98-105. https://doi.org/10.1016/j.jfoodeng.2010.06.017
  36. Kirchmajer DM, Watson CA , Ranson M. 2012. Gelapin, a degradable genipin cross-linked gelatin hydrogel. RSC Adv. 3: 1073-1081. https://doi.org/10.1039/C2RA22859A
  37. Huang T, Tu ZC, Shangguan X. 2017. Rheological behavior, emulsifying properties and structural characterization of phosphorylated fish gelatin. Food Chem. 246: 428-436. https://doi.org/10.1016/j.foodchem.2017.12.023
  38. Huang T, Zhao HZ. 2019. Comparison of gelling properties and flow behaviours of microbial transglutaminase (MTGase) and pectin modified fish gelatin. J. Texture Stud. 50: 400-409. https://doi.org/10.1111/jtxs.12405
  39. Liu F, Chiou BS, Avena-Bustillos RJ. 2016. Study of combined effects of glycerol and transglutaminase on properties of gelatin films. Food Hydrocolloid. 65: 1-9. https://doi.org/10.1016/j.foodhyd.2016.10.004
  40. Wangtueai S, Noomhorm A, Regenstein JM. 2010. Effect of microbial transglutaminase on gel properties and film characteristics of gelatin from lizardfish (saurida spp.) scales. J. Food Sci. 75: C731-C739. https://doi.org/10.1111/j.1750-3841.2010.01835.x
  41. Jridi M, Hajji S, Ayed HB. 2014. Physical, structural, antioxidant and antimicrobial properties of gelatin-chitosan composite edible films. Int. J Biol. Macromol. 67: 373-379. https://doi.org/10.1016/j.ijbiomac.2014.03.054
  42. Hamzeh A, Benjakul S, Sae-Leaw T. 2018. Effect of drying methods on gelatin from splendid squid (Loligo formosana) skins. Food Biosci. 26: 96-103. https://doi.org/10.1016/j.fbio.2018.10.001
  43. Lua Caldas de Oliveira. 2019. Improvement of the characteristics of fish gelatin-gum arabic through the formation of the polyelectrolyte complex. Carbohydr. Polym. 223: 115068. https://doi.org/10.1016/j.carbpol.2019.115068

Cited by

  1. An overview and future prospects of recombinant protein production in Bacillus subtilis vol.105, pp.18, 2020, https://doi.org/10.1007/s00253-021-11533-2