References
- Lorand L, Graham RM. 2003. Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat. Rev. Mol. Cell Biol. 4: 140-156. https://doi.org/10.1038/nrm1014
- Yokoyama K, Nio N, Kikuchi Y. 2004. Properties and applications of microbial transglutaminase. Appl. Microbiol. Biotechnol. 64: 447-454. https://doi.org/10.1007/s00253-003-1539-5
- Liu S, Wan D, Wang M. 2015. Overproduction of pro-transglutaminase from Streptomyces hygroscopicus in Yarrowia lipolytica and its biochemical characterization. BMC Biotechnol. 15: 75. https://doi.org/10.1186/s12896-015-0193-1
- Duran R, Junqua M, Schmitter JM. 1998. Purification, characterisation, and gene cloning of transglutaminase from Streptoverticillium cinnamoneum CBS 683.68. Biochimie 80: 313-319. https://doi.org/10.1016/S0300-9084(98)80073-4
- Ando H, Adachi M, Umeda K, Matsuura A, Nonaka M, Uchio R. 1989. Purification and characteristics of a novel transglutaminase derived from microorganisms. Agric. Biol. Chem. 53: 2613-2617. https://doi.org/10.1271/bbb1961.53.2613
- Casadio R, Polverini E, Mariani P, Spinozzi F. 1999. The structural basis for the regulation of tissue transglutaminase by calcium ions. Eur. J. Biochem. 262: 672-679. https://doi.org/10.1046/j.1432-1327.1999.00437.x
- Kobayashi K, Suzuki SI, Izawa Y, Miwa K, Yamanaka S. 1998. Transglutaminase in sporulating cells of Bacillus subtilis. J. Gen. Appl. Microbiol. 44: 85-91. https://doi.org/10.2323/jgam.44.85
- Sorde KL, Ananthanarayan L. 2019. Isolation, screening, and optimization of bacterial strains for novel transglutaminase production. Prep. Biochem. Biotechol. 49: 64-73. https://doi.org/10.1080/10826068.2018.1536986
- Zhu Y, Tramper J. 2008. Novel applications for microbial transglutaminase beyond food processing. Trends Biotechnol. 26: 559-565. https://doi.org/10.1016/j.tibtech.2008.06.006
- Zotzel J, Keller P, Fuchsbauer HL. 2003. Transglutaminase from Streptomyces mobaraensis is activated by an endogenous metalloprotease. Eur. J. Biochem. 270: 3214-3222. https://doi.org/10.1046/j.1432-1033.2003.03703.x
- Washizu K, Ando K, Koikeda S. 1994. Molecular cloning of the gene for microbial transglutaminase from Streptoverticillium and its expression in Streptomyces lividans. Biosci. Biotechnol. Biochem. 58: 82-87. https://doi.org/10.1271/bbb.58.82
- Kikuchi Y, Date M, Yokoyama KI. 2003. Secretion of active-form Streptoverticillium mobaraense transglutaminase by Corynebacterium glutamicum: Processing of the pro-transglutaminase by a cosecreted subtilisin-like protease from Streptomyces albogriseolus. Appl. Environ. Microbiol. 69: 358-366. https://doi.org/10.1128/AEM.69.1.358-366.2003
- Yang HL, Pan L, Lin Y. 2009. Purification and on-column activation of a recombinant histidine-tagged pro-transglutaminase after soluble expression in Escherichia coli. Biosci. Biotechnol. Biochem. 73: 2531-2534. https://doi.org/10.1271/bbb.90422
- Liu S, Zhang DX, Wang M. 2011. The order of expression is a key factor in the production of active transglutaminase in Escherichia coli by co-expression with its pro-peptide. Microb. Cell Fact. 10: 112-120. https://doi.org/10.1186/1475-2859-10-112
- Noda S, Miyazaki T, Tanaka T. 2013. High-level production of mature active-form Streptomyces mobaraensis transglutaminase via pro-transglutaminase processing using Streptomyces lividans as a host. Biochem. Eng. J. 74: 76-80. https://doi.org/10.1016/j.bej.2013.02.011
- Yurimoto H, Yamane M, Kikuchi Y. 2014. The pro-peptide of streptomyces mobaraensis transglutaminase functions in cis and in trans to mediate efficient secretion of active enzyme from methylotrophic yeasts. Biosci. Biotech. Biochem. 68: 2058-2069. https://doi.org/10.1271/bbb.68.2058
- Date M, Yokoyama KI, Umezawa Y. 2004. High level expression of Streptomyces mobaraensis transglutaminase in Corynebacterium glutamicum using a chimeric pro-region from Streptomyces cinnamoneus transglutaminase. J. Biotechnol. 110: 219-226. https://doi.org/10.1016/j.jbiotec.2004.02.011
- Shaista B, Saima S, Sajjad A. 2015. Enhanced and secretory expression of human granulocyte colony stimulating factor by Bacillus subtilis SCK6. BioMed. Res. Int. 2015: 1-9.
- Simonen M, Palva I. 1993. Protein secretion in Bacillus species. Microbiol. Rev. 57: 109-137. https://doi.org/10.1128/MMBR.57.1.109-137.1993
- Fu LL, Xu ZR, Li WF. 2007. Protein secretion pathways in Bacillus subtilis: implication for optimization of heterologous protein secretion. Biotechnol Adv. 25: 1-12. https://doi.org/10.1016/j.biotechadv.2006.08.002
- Tian JW, Long XF, Tian YQ. 2019. Enhanced extracellular recombinant keratinase activity in Bacillus subtilis SCK6 through signal peptide optimization and site-directed mutagenesis. RSC Adv. 9: 33337-33344. https://doi.org/10.1039/C9RA07866E
- Fu G, Liu J, Li J. 2018. Systematic screening of optimal signal peptides for secretory production of heterologous proteins in Bacillus subtilis. J. Agr. Food Chem. 66: 13141-13151. https://doi.org/10.1021/acs.jafc.8b04183
- Liu S, Wang M, Du G. 2016. Improving the active expression of transglutaminase in Streptomyces lividans by promoter engineering and codon optimization. BMC Biotechnol. 16: 75. https://doi.org/10.1186/s12896-016-0304-7
- Tian JW, Xu Z, Long XF, Tian YQ. 2019. High-expression keratinase by Bacillus subtilis SCK6 for enzymatic dehairing of goatskins. Int. J. Biol. Macromol. 135: 119-126. https://doi.org/10.1016/j.ijbiomac.2019.05.131
- Li WJ, Xu P, Schumann P. 2007. Georgenia ruanii sp. nov., a novel actinobacterium isolatedfrom forest soil inYunnan(China), and emended description of the genus Georgenia, Int. J. Syst. Evol. Micr. 57: 1424-1428. https://doi.org/10.1099/ijs.0.64749-0
- Zhang XZ, Zhang YHP. 2011. Simple, fast and high-efficiency transformation system for directed evolution of cellulase in Bacillus subtilis. Microb. Biotechnol. 4: 98-105. https://doi.org/10.1111/j.1751-7915.2010.00230.x
- Folk JE, Cole PW. 1966. Mechanism of action of guinea pig liver transglutaminase. J. Biol. Chem. 241: 5518-5525. https://doi.org/10.1016/S0021-9258(18)96373-8
- Liu S, Zhang DX. 2011. The pro-region of Streptomyces hygroscopicus transglutaminase affects its secretion by Escherichia coli. FEMS Microbiol. Lett. 324: 98-105. https://doi.org/10.1111/j.1574-6968.2011.02387.x
- Binnie C, Cossar JD, Stewart DIH. 1997. Heterologous biopharmaceutical protein expression in Streptomyces. Trends Biotechnol. 15: 315-320. https://doi.org/10.1016/S0167-7799(97)01062-7
- Yokoyama KI, Nakamura N, Seguro K. 2000. Overproduction of microbial transglutaminase in Escherichia coli, in vitro refolding, and characterization of the refolded form. Biosci. Biotechnol. Biochem. 64: 1263-1270. https://doi.org/10.1271/bbb.64.1263
- Lin YS, Chao ML, Liu CH. 2006. Cloning of the gene coding for transglutaminase from Streptomyces platensis and its expression in Streptomyces lividans. Process Biochem. 41: 519-524. https://doi.org/10.1016/j.procbio.2005.09.009
- Chaudhari. 2017. Non-covalent conjugation of cutinase from Fusarium sp. ICT SAC1 with pectin for enhanced stability: Process minutiae, kinetics, thermodynamics and structural study. Int. J. Biol. Macromol. 102: 729-740. https://doi.org/10.1016/j.ijbiomac.2017.04.072
- Cui L, Du G, Zhang D. 2007. Purification and characterization of transglutaminase from a newly isolated Streptomyces hygroscopicus. Food Chem. 105: 612-618. https://doi.org/10.1016/j.foodchem.2007.04.020
- Anulak, Worratato, Jirawat. 2003. Cross-linking of actomyosin by crude tilapia (oreochromis niloticus) transglutaminase. J. Food Biochem. 27: 35-51. https://doi.org/10.1111/j.1745-4514.2003.tb00265.x
- Cardoso C, Rogerio Mendes, Vaz-Pires P. 2010. Effect of salt and MTGase on the production of high quality gels from farmed sea bass. J. Food Eng. 101: 98-105. https://doi.org/10.1016/j.jfoodeng.2010.06.017
- Kirchmajer DM, Watson CA , Ranson M. 2012. Gelapin, a degradable genipin cross-linked gelatin hydrogel. RSC Adv. 3: 1073-1081. https://doi.org/10.1039/C2RA22859A
- Huang T, Tu ZC, Shangguan X. 2017. Rheological behavior, emulsifying properties and structural characterization of phosphorylated fish gelatin. Food Chem. 246: 428-436. https://doi.org/10.1016/j.foodchem.2017.12.023
- Huang T, Zhao HZ. 2019. Comparison of gelling properties and flow behaviours of microbial transglutaminase (MTGase) and pectin modified fish gelatin. J. Texture Stud. 50: 400-409. https://doi.org/10.1111/jtxs.12405
- Liu F, Chiou BS, Avena-Bustillos RJ. 2016. Study of combined effects of glycerol and transglutaminase on properties of gelatin films. Food Hydrocolloid. 65: 1-9. https://doi.org/10.1016/j.foodhyd.2016.10.004
- Wangtueai S, Noomhorm A, Regenstein JM. 2010. Effect of microbial transglutaminase on gel properties and film characteristics of gelatin from lizardfish (saurida spp.) scales. J. Food Sci. 75: C731-C739. https://doi.org/10.1111/j.1750-3841.2010.01835.x
- Jridi M, Hajji S, Ayed HB. 2014. Physical, structural, antioxidant and antimicrobial properties of gelatin-chitosan composite edible films. Int. J Biol. Macromol. 67: 373-379. https://doi.org/10.1016/j.ijbiomac.2014.03.054
- Hamzeh A, Benjakul S, Sae-Leaw T. 2018. Effect of drying methods on gelatin from splendid squid (Loligo formosana) skins. Food Biosci. 26: 96-103. https://doi.org/10.1016/j.fbio.2018.10.001
- Lua Caldas de Oliveira. 2019. Improvement of the characteristics of fish gelatin-gum arabic through the formation of the polyelectrolyte complex. Carbohydr. Polym. 223: 115068. https://doi.org/10.1016/j.carbpol.2019.115068
Cited by
- An overview and future prospects of recombinant protein production in Bacillus subtilis vol.105, pp.18, 2020, https://doi.org/10.1007/s00253-021-11533-2