• Title/Summary/Keyword: Minimum oxygen concentration

Search Result 102, Processing Time 0.025 seconds

A Study on Dust Explosion Characteristics of Hydroxypropyl Methyl Cellulose (Hydroxypropyl Methyl Cellulose의 분진 폭발특성에 관한 연구)

  • 임우섭;목연수
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.95-100
    • /
    • 2000
  • This study was performed in Hartmann type dust explosion apparatus in order to research the dust explosion characteristics of hydroxypropyl methyl cellulose(HPMC): minimum explosive limit, minimum ignition energy, limiting oxygen concentration, maximum explosion pressure, rate of pressure rise, etc. The samples of HPMC dust were distributed into 120-140 mesh, 170-230 mesh and 325 under, and the gap distance of the discharge electrode was setted up at 5mm. The experimental results were obtained as follows: (1) The minimum explosive limit for HPMC dust was founded at 180g/㎥. the minimum ignition energy at 9.8mJ and the limiting oxygen concentration at 12%. (2) The maximum explosion pressure of HPMC dust was $8.1kg/cm^2\;{\cdot}\;$abs at the concentration of $500g/m^3$ and the maximum rate of pressure rise was 203.98 bar/sec at the concentration of $480g/m^3$ for 325 under.

  • PDF

A Study on The Spontaneous Ignition of a Hydroxy Propyl Methyl Cellulose Dust Cloud (Hydroxy Propyl Methyl Cellulose 분진의 운상자연발화에 관한 연구)

  • Lim, Woo-Sub;Mok, Yun-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.137-140
    • /
    • 2004
  • The minimum ignition temperature at which the dust cloud can spontaneously ignite is considered to be very important in industries to prevent explosion occurring in hot surfaces. This paper has dealt with the experimental study of the determination of minimum ignition temperature of Hydroxy Propyl Methyl Cellulose (HPMC) dust cloud. We have used the Godbert-Greenwald Furnace Apparatus to determine the ignition temperature and limiting oxyten concentration for dust could. The experimental determinations on the minimum ignition temperature were carried out with various particle size with nominal diameters 45, 75 and 106${\mu}m$. The limiting oxygen concentration of dust cloud was determinated for the smaller size(45${\mu}m$) HPMC. Minimum ignition temperature of dust cloud was at 364$^{\circ}C$ for the concentration of 2.5g/L in the air and became higher with the increasing of nitrogen concentration. It was also found that the ignition didn't occur when the oxygen concentration was below 10%, and limiting oxygen concentration is at 11%.

The effects of oxygen-concentration increased by oxygen-enriching membrane on combustion of S.I. engines (기체분리막에 의해 상승된 산소농도가 스파크점화기관의 연소에 미치는 영향)

  • 권병철;김형섭
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.74-80
    • /
    • 1992
  • The purpose of this study is to improve the performance of gasoline engine. Combustion-characteristics orignated from supplying cylinder with fuel-air mixture which was formed by the rise of oxygen-concentration in air with oxygen-enriching membrane have been investigated. The results showed that the poor-limit of oxygen-concentration was increased by shortening combustion-duration because the rise of oxygen-concentration in fuel-air mixture resulted in the promotion of combustion-velocity. Also, the generation of large output of power was expected from combustion in proportion as the amount of oxygen was increased.

  • PDF

A Study on Spontaneous Ignition of Hydroxy Propyl Methyl Cellulose (Hydroxy Propyl Methyl Cellulose의 자연발화에 관한 연구)

  • 최재욱;목연수;하동명
    • Fire Science and Engineering
    • /
    • v.15 no.4
    • /
    • pp.34-40
    • /
    • 2001
  • The spontaneous ignition of hydroxypropyl methyl cellulose(HPMC) was investigated at constant ambient temperature in the oven and minimum ignition temperature of dust clouds with Godbret-Creenwald Furnace respectively, In the experiments of the vessel filled with sample. the larger the vessel was the lower the spontaneous ignition temperature and ambient temperature was calculated from the Frank-Kamenetskii thermal ignition theory. The minimum ignition temperature for the dust cloud state was found under 21% oxygen concentration. At the experiment with the change of oxygen concentration, HPMC was not ignite at 10% $O_2$and so the limiting oxygen concentration was obtained at 10%.

  • PDF

A Study on the Hazard of Converted Gas for Surface Heating Treatment (표면열처리용 변성가스의 위험성에 관한 연구)

  • Choi Jae-Wook;Min Wong-Chul;Lim Woo-Sub;Lee Byoung-Chul;Kim Dong-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.3 s.28
    • /
    • pp.9-14
    • /
    • 2005
  • To estimate the explosion characteristics of converted gas, the study was examined into effects of altering oxygen concentration and adding hydrogen. From the result of the experiment, as the concentration of converted gas and hydrogen were increased at $21\%$ oxygen concentration, the lower explosion limit was low. Minimum explosion oxygen concentration was $6\%$. Maximum explosion pressure of converted gas was $4.61 kg_f/cm^2$, now Maximum explosion pressure rising velocity was $130.75 kg_f/cm^2/s$ at converted gas concentration $40\%$. Also, minimum ignition energy was 0.13 mJ at converted gas concentration $50\%$.

  • PDF

A Study on the Minimum Ignition Energy Measurements for Liquid Jet A1 Fuel under at Elevated Oxygen Concentrations and Reduced Atmospheric Pressures (고산소-저기압 환경에서 JET A1 액체연료의 최소점화에너지 측정에 관한 연구)

  • Kwon, Haeng-Jun;Park, Seul-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.88-93
    • /
    • 2017
  • In the present study, the ignition characteristics of liquid fuel were experimentally investigated. To quantify its ignitability as ignition characteristics, the minimum ignition energy (MIE) of liquid fuel was defined and measured under at the elevated oxygen concentrations and reduced atmospheric pressures which that are the most probable conditions likely to be encountered during operation of the space launch vehicle's operating process. The experimental results demonstrate that the measured MIE decreased with the increasing the oxygen concentration at given atmospheric pressures. When the atmospheric pressure was reduced from 1 atm to 0.2 atm at a fixed oxygen concentration, the measured MIE was found to vary with $P^{-2}$ but the lowest MIE was observed at 0.8 atm.

A Study on the Explosion Phenomenon and Flame Propagation of LP Gas (LP가스의 폭발 현상 및 화염전파에 관한 연구)

  • Choi, Jae-Wook;Lee, Dong-Hoon;Kim, Tae-Gn;Min, Wong-Chul;Lim, Woo-Sub;Choi, Byoung-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.2 s.35
    • /
    • pp.65-70
    • /
    • 2007
  • The explosion phenomenon and hazard estimate of LP gas, the study was examined into variation of oxygen concentration and LP gas concentration. As the result of experiment, the lower explosive limit was decreased as the increased at concentration of LP gas and 21% of oxygen concentration. Minimum oxygen concentration was 14.5%. 12.0%, 11.5% at 1.0, 1.5 and 2.0 bar respectively. And maximum explosion pressure was increased for $6.46kg/cm^2,\;9.41kg/cm^2\;and\;13.49kg/cm^2$ according to increased of pressure. The speed of flame propagation was increased as the higher with initial pressure of LP gas.

  • PDF

Damage-Free Treatment of ITO Films using Nitrogen-Oxygen (N2-O2) Molecular DC Plasma

  • Kim, Hong Tak;Nguyen, Thao Phoung Ngoc;Park, Chinho
    • Current Photovoltaic Research
    • /
    • v.3 no.4
    • /
    • pp.112-115
    • /
    • 2015
  • In this study, the surface of ITO films was modified using $N_2-O_2$ molecular plasma, and the effects of oxygen concentration in the plasma on the ITO surface properties were investigated. Upon plasma treatment of ITO films, the surface roughness of ITO films seldom changed up to the oxygen concentration in the range of 0% to 40%, while the roughness of the films slightly changed at or above the oxygen concentration of 60%. The contact angle of water droplet on ITO films dramatically changed with varying oxygen concentration in the plasma, and the minimum value was found to be at the oxygen concentration of 20%. The plasma resistance at this condition exhibited a maximum value, and the change of resistance showed an inverse relationship compared to that of contact angle. From these results, it was conjectured that the chemical reactions in the sheath of the molecular plasma dominated more than the physical actions due to energetic ion bombardment, and also the plasma resistance could be used as an indirect indicator to qualitatively diagnosis the state of plasma during the plasma treatment.

The Explosion Characteristics of City Gas on the Change of Oxygen Concentration and Pressure (산소농도와 압력 변화에 따른 도시가스의 폭발특성)

  • Choi Jae-Wook;Lee In-Sik;Park Sung-tae
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.1 s.26
    • /
    • pp.38-43
    • /
    • 2005
  • To examine the characteristics of the explosion of city gas, the concentration of oxygen was changed with the change of initial pressure. From the result of the experiment, as the concentration of oxygen was low, the explosion limit became narrow and the minimum concentration of oxygen for the explosion was $12\%$. Furthermore, As the increase of the initial pressure, explosion ranges were a little increased. And as the change of the initial pressure, the maximum explosion pressure were $6.3 kgf/cm^2{\cdot}g,\;12.7 kgf/cm^2{\cdot}g$ and the maximum pressure rising velocity were $245.63 kgf/cm^2/s,\;427.88 kgf/cm^2/s$.

  • PDF

A Study on the Measurement of Explosion Range by CO2 Addition for the Process Safety Operation of Propylene (프로필렌의 공정안전 운전을 위한 CO2 첨가량에 따른 폭발범위 측정에 관한 연구)

  • Choi, Yu-Jung;Heo, Jong-Man;Kim, Jung-Hun;Choi, Jae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.599-606
    • /
    • 2019
  • Most facilities that manufacture products made from the hazardous materials operate at high temperatures and pressures. Therefore, there is a risk of fire explosion. In particular, an explosion accident is a major risk factor for facilities with hazardous materials, such as oil, chemical, and gas. Propylene is often used in sites producing basic raw materials and synthetic materials by addition polymerization at petrochemical plants. To prevent an explosion in the business using propylene, the explosion range with the oxygen concentration was calculated according to the changes in temperature and pressure using an inert gas, carbon dioxide. In these measurements, the temperature was $25^{\circ}C$, $100^{\circ}C$, and $200^{\circ}C$ and the amount of carbon dioxide in the container was $1.0kgf/cm^2.G$, $1.5kgf/cm^2.G$, $2.0kgf/cm^2.G$, and $2.5kgf/cm^2.G$. The explosion limit was related to temperature, pressure, and oxygen concentration. The minimum oxygen concentration for an explosion decreased with increasing temperature and pressure. The range of explosion narrowed with decreasing oxygen concentration. In addition, no explosion occurred at concentrations below the minimum oxygen concentration, even with steam and an ignition source of propylene.