DOI QR코드

DOI QR Code

Trends of Nafion-based IPMC Application and Development

Nafion 기반 IPMC 응용 및 개발 동향

  • Ho, Donghae (Advanced Institute of Nanotechnology, Sungkyunkwan University) ;
  • Cho, Sooyoung (Chemical and Biomolecular Engineering, Yonsei University) ;
  • Choi, Yoon Young (Advanced Institute of Nanotechnology, Sungkyunkwan University) ;
  • Choi, Young Jin (Advanced Institute of Nanotechnology, Sungkyunkwan University) ;
  • Cho, Jeong Ho (Chemical and Biomolecular Engineering, Yonsei University)
  • 호동해 (성균관대학교 성균나노과학 기술원) ;
  • 조수영 (연세대학교 화공생명공학과) ;
  • 최윤영 (성균관대학교 성균나노과학 기술원) ;
  • 최영진 (성균관대학교 성균나노과학 기술원) ;
  • 조정호 (연세대학교 화공생명공학과)
  • Received : 2020.02.25
  • Accepted : 2020.03.17
  • Published : 2020.03.31

Abstract

Recently, polymer-metal composite (IPMC)-based ionic artificial muscle has been drawing a huge attention for its excellent soft actuator performance having outstanding soft actuator performance with efficient conversion of electrical energy to mechanical energy under low working voltage. In addition, light, flexible and soft nature of IPMC and high bending strain response enabled development of versatile sensor application in association with soft actuator. In this paper, current issues of IPMC were discussed including standardizing preparation steps, relaxation under DC bias, inhibiting solvent evaporation, and improving poor output force. Solutions for these drawbacks of IPMC have recently been suggested in recent studies. After following explanation of the IPMC working mechanism, we investigate the main factors that affect the operating performance of the IPMC. Then, we reviewed the optimized IPMC actuator fabrication conditions especially for the preparation process, additive selection for a thicker membrane, water content, solvent substitutes, encapsulation, etc. Lastly, we considered the pros and cons of IPMCs for sensor application in a theoretical and experimental point of view. The strategies discussed in this paper to overcome such deficiencies of IPMCs are highly expected to provide a scope for IPMC utilization in soft robotics application.

Keywords

References

  1. A. T. Abdulsadda; X. Tan "An Artificial Lateral Line System Using Ipmc Sensor Arrays". Int. J. Smart Nano Mater., 3 [3] 226-242 (2012). https://doi.org/10.1080/19475411.2011.650233
  2. C. K. Chung; P. K. Fung; Y. Z. Hong; M. S. Ju; C. C. K. Lin; T. C. Wu "A Novel Fabrication of Ionic Polymer-Metal Composites (Ipmc) Actuator with Silver Nano-Powders". Sensor. Actuat. B-Chem., 117 [2] 367-375 (2006). https://doi.org/10.1016/j.snb.2005.11.021
  3. S. Guo; Y. Ge; L. Li; S. Liu In Underwater Swimming Micro Robot Using Ipmc Actuator, 2006 International Conference on Mechatronics and Automation, IEEE: 2006; pp 249-254.
  4. K. Jung; J. Nam; H. Choi "Investigations on Actuation Characteristics of Ipmc Artificial Muscle Actuator". Sensor. Actuat. A-Phys., 107 [2] 183-192 (2003). https://doi.org/10.1016/S0924-4247(03)00346-7
  5. K. Surana; P. K. Singh; B. Bhattacharya; C. S. Verma; R. M. Mehra "Synthesis of Graphene Oxide Coated Nafion Membrane for Actuator Application". Ceram. Int., 41 [3] 5093-5099 (2015). https://doi.org/10.1016/j.ceramint.2014.12.080
  6. B. Bhandari; G.-Y. Lee; S.-H. Ahn "A Review on Ipmc Material as Actuators and Sensors: Fabrications, Characteristics and Applications". Int. J. Pr. Eng. Man., 13 [1] 141-163 (2012). https://doi.org/10.1007/s12541-012-0020-8
  7. V. Palmre; J. J. Hubbard; M. Fleming; D. Pugal; S. Kim; K. J. Kim; K. K. Leang "An Ipmc-Enabled Bio-Inspired Bending/Twisting Fin for Underwater Applications". Smart Mater. Struct., 22 [1] 014003 (2012). https://doi.org/10.1088/0964-1726/22/1/014003
  8. R. Tiwari; K. J. Kim "Ipmc as a Mechanoelectric Energy Harvester: Tailored Properties". Smart Mater. Struct., 22 [1] 015017 (2012). https://doi.org/10.1088/0964-1726/22/1/015017
  9. N. Kamamichi; M. Yamakita; K. Asaka; Z.-W. Luo In A Snake-Like Swimming Robot Using Ipmc Actuator/Sensor, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., IEEE: 2006; pp 1812-1817.
  10. M. Mojarrad; M. Shahinpoor In Biomimetic Robotic Propulsion Using Polymeric Artificial Muscles, Proceedings of International Conference on Robotics and Automation, IEEE: 1997; pp 2152-2157.
  11. S. Guo; L. Shi; X. Ye; L. Li In A New Jellyfish Type of Underwater Microrobot, 2007 International Conference on Mechatronics and Automation, IEEE: 2007; pp 509-514.
  12. K. Krishen "Space Applications for Ionic Polymer-Metal Composite Sensors, Actuators, and Artificial Muscles". Acta Astronaut., 64 [11-12] 1160-1166 (2009). https://doi.org/10.1016/j.actaastro.2009.01.008
  13. Q. Shen; T. M. Wang; K. J. Kim "A Biomimetic Underwater Vehicle Actuated by Waves with Ionic Polymer-Metal Composite Soft Sensors". Bioinspir. Biomim., 10 [5] 055007 (2015). https://doi.org/10.1088/1748-3190/10/5/055007
  14. H. K. Lee; N. J. Choi; S. Jung; K. H. Park; H. Jung; J. K. Shim; J. W. Ryu; J. Kim "Electroactive Polymer Actuator for Lens- Drive Unit in Auto-Focus Compact Camera Module". ETRI J., 31 [6] 695-702 (2009). https://doi.org/10.4218/etrij.09.1209.0023
  15. S.-i. Son; D. Pugal; T. Hwang; H. R. Choi; J. C. Koo; Y. Lee; K. Kim; J.-D. Nam "Electromechanically Driven Variable- Focus Lens Based on Transparent Dielectric Elastomer". Appl. Opt., 51 [15] 2987-2996 (2012). https://doi.org/10.1364/AO.51.002987
  16. A. Tripathi; B. Chattopadhyay; S. Das "Cost-Effective Fabrication of Ionic Polymer Based Artificial Muscles for Catheter-Guidewire Maneuvering Application". Microsyst. Technol., 25 [3] 1129-1136 (2019). https://doi.org/10.1007/s00542-018-4152-3
  17. Y. Bar-Cohen "Electroactive Polymers for Refreshable Braille Displays". SPIE Newsroom, 11 (2009).
  18. X. L. Chang; P. S. Chee; E. H. Lim; W. C. Chong "Radio-Frequency Enabled Ionic Polymer Metal Composite (Ipmc) Actuator for Drug Release Application". Smart Mater. Struct., 28 [1] 015024 (2018). https://doi.org/10.1088/1361-665x/aaefd3
  19. S. J. Kim; I. T. Lee; Y. H. Kim "Performance Enhancement of Ipmc Actuator by Plasma Surface Treatment". Smart Mater. Struct., 16 [1] N6 (2007). https://doi.org/10.1088/0964-1726/16/1/N02
  20. M. Shahinpoor; K. J. Kim "The Effect of Surface-Electrode Resistance on the Performance of Ionic Polymer-Metal Composite (Ipmc) Artificial Muscles". Smart Mater. Struct., 9 [4] 543 (2000). https://doi.org/10.1088/0964-1726/9/4/318
  21. S.-G. Lee; H.-C. Park; S. D. Pandita; Y. Yoo "Performance Improvement of Ipmc (Ionic Polymer Metal Composites) for a Flapping Actuator". Int. J. Control Autom., 4 [6] 748-755 (2006).
  22. K. Kikuchi; S. Tsuchitani "Nafion(R)-Based Polymer Actuators with Ionic Liquids as Solvent Incorporated at Room Temperature". J. Appl. Phys., 106 [5] 053519 (2009). https://doi.org/10.1063/1.3204961
  23. Y. Wang; H. Chen; Y. Wang; Z. Zhu; D. Li "Effect of Dehydration on the Mechanical and Physicochemical Properties of Gold and Palladium-Ionomeric Polymer-Metal Composite (Ipmc) Actuators". Electrochim. Acta, 129 450-458 (2014). https://doi.org/10.1016/j.electacta.2014.02.114
  24. Z. Zhu; K. Asaka; L. Chang; K. Takagi; H. Chen "Physical Interpretation of Deformation Evolvement with Water Content of Ionic Polymer-Metal Composite Actuator". J. Appl. Phys., 114 [18] 184902 (2013). https://doi.org/10.1063/1.4829706
  25. U. Deole; R. Lumia; M. Shahinpoor; M. Bermudez "Design and Test of Ipmc Artificial Muscle Microgripper". J. Micro. Nano, Mechatron., 4 [3] 95-102 (2008). https://doi.org/10.1007/s12213-008-0004-z
  26. K. Jung; J. Nam; H. Choi "Investigations on Actuation Characteristics of Ipmc Artificial Muscle Actuator". Sensor. Actuat. A-Phys., 107 [2] 183-192 (2003). https://doi.org/10.1016/S0924-4247(03)00346-7
  27. L. Chang; H. Chen; Z. Zhu; B. Li "Manufacturing Process and Electrode Properties of Palladium- Electroded Ionic Polymer-Metal Composite". Smart Mater. Struct., 21 [6] 065018 (2012). https://doi.org/10.1088/0964-1726/21/6/065018
  28. Y. Wang; Z. Zhu; H. Chen; B. Luo; L. Chang; Y. Wang; D. Li "Effects of Preparation Steps on the Physical Parameters and Electromechanical Properties of Ipmc Actuators". Smart Mater. Struct., 23 [12] 125015 (2014). https://doi.org/10.1088/0964-1726/23/12/125015
  29. B. L. Stoimenov; J. M. Rossiter; T. Mukai In Anisotropic Surface Roughness Enhances the Bending Response of Ionic Polymer-Metal Composite (Ipmc) Artificial Muscles, Smart Materials IV, International Society for Optics and Photonics: 2006; p 641302.
  30. Y. Wang; Z. Zhu; J. Liu; L. Chang; H. Chen "Effects of Surface Roughening of Nafion 117 on the Mechanical and Physicochemical Properties of Ionic Polymer-Metal Composite (Ipmc) Actuators". Smart Mater. Struct., 25 [8] 085012 (2016). https://doi.org/10.1088/0964-1726/25/8/085012
  31. X. Bao; Y. Bar-Cohen; S.-S. Lih In Measurements and Macro Models of Ionomeric Polymer-Metal Composites (Ipmc), Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices (EAPAD), International Society for Optics and Photonics: 2002; pp 220-227.
  32. M. Annabestani; M. Maymandi-Nejad; N. Naghavi "Restraining Ipmc Back Relaxation in Large Bending Displacements: Applying Non-Feedback Local Gaussian Disturbance by Patterned Electrodes". IEEE T. Electron. Dev., 63 [4] 1689-1695 (2016). https://doi.org/10.1109/TED.2016.2530144
  33. D. K. Biswal; D. Bandopadhya; S. K. Dwivedy "Dynamic Modeling and Effect of Dehydration on Segmented Ipmc Actuators Following Variable Parameter Pseudo-Rigid Body Modeling Technique". Mech. Adv. Mater. Struc., 21 [2] 129-138 (2014). https://doi.org/10.1080/15376494.2012.680665
  34. J. H. Park; S. W. Lee; D. S. Song; J. Y. Jho "Highly Enhanced Force Generation of Ionic Polymer-Metal Composite Actuators Via Thickness Manipulation". ACS appl. mater. interfaces, 7 [30] 16659-16667 (2015). https://doi.org/10.1021/acsami.5b04296
  35. Q. S. He; M. Yu; L. L. Song; H. T. Ding; X. Q. Zhang; Z. D. Dai "Experimental Study and Model Analysis of the Performance of Ipmc Membranes with Various Thickness". J Bionic Eng, 8 [1] 77-85 (2011). https://doi.org/10.1016/S1672-6529(11)60001-2
  36. D. Guo; H. Ding; H. Wei; Q. He; M. Yu; Z. Dai "Hybrids Perfluorosulfonic Acid Ionomer and Silicon Oxide Membrane for Application in Ion-Exchange Polymer-Metal Composite Actuators". Sci. China Series. E: Techno. Sci., 52 [10] 3061-3070 (2009). https://doi.org/10.1007/s11431-009-0280-4
  37. Y. Wang; H. Chen; Y. Wang; B. Luo; L. Chang; Z. Zhu; B. Li "Influence of Additives on the Properties of Casting Nafion Membranes and So-Based Ionic Polymer-Metal Composite Actuators". Polym. Eng. Sci., 54 [4] 818-830 (2014). https://doi.org/10.1002/pen.23634
  38. C.-A. Dai; C.-J. Chang; A.-C. Kao; W.-B. Tsai; W.-S. Chen; W.-M. Liu; W.-P. Shih; C.-C. Ma "Polymer Actuator Based on Pva/Pamps Ionic Membrane: Optimization of Ionic Transport Properties". Sensor. Actuat. A-Phys., 155 [1] 152-162 (2009). https://doi.org/10.1016/j.sna.2009.08.002
  39. L. F. Chang; L. F. Yu; C. Q. Li; Q. Z. Niu; Y. Hu; P. Lu; Z. C. Zhu; Y. C. Wu "Ionic Polymer with Single-Layered Electrodes: A Novel Strategy for Ionic Actuator Design". Smart Mater. Struct., 27 [10] (2018).
  40. M. Safari; L. Naji; R. T. Baker; F. A. Taromi "The Enhancement Effect of Lithium Ions on Actuation Performance of Ionic Liquid-Based Ipmc Soft Actuators". Polymer, 76 140-149 (2015). https://doi.org/10.1016/j.polymer.2015.09.004
  41. N. Fujiwara; K. Asaka; Y. Nishimura; K. Oguro; E. Torikai "Preparation of Gold-Solid Polymer Electrolyte Composites as Electric Stimuli-Responsive Materials". Chem. Mater., 12 [6] 1750-1754 (2000). https://doi.org/10.1021/cm9907357
  42. M. Shahinpoor; K. J. Kim "Novel Ionic Polymer-Metal Composites Equipped with Physically Loaded Particulate Electrodes as Biomimetic Sensors, Actuators and Artificial Muscles". Sensor. Actuat. A-Phys., 96 [2] 125-132 (2002). https://doi.org/10.1016/S0924-4247(01)00777-4
  43. T.-G. Noh; Y. Tak; J.-D. Nam; H. Choi "Electrochemical Characterization of Polymer Actuator with Large Interfacial Area". Electrochim. Acta, 47 [13] 2341-2346 (2002). https://doi.org/10.1016/S0013-4686(02)00089-0
  44. N. M. Shinde; J. M. Yun; R. S. Mane; S. Mathur; K. H. Kim "An Overview of Self- Grown Nanostructured Electrode Materials in Electrochemical Supercapacitors". J. Korean Ceram. Soc., 55 [5] 407-418 (2018). https://doi.org/10.4191/kcers.2018.55.5.01
  45. Y. Wang; J. Liu; Y. Zhu; D. Zhu; H. Chen " Formation and Characterization of Dendritic Interfacial Electrodes inside an Ionomer". ACS appl. mater. interfaces, 9 [36] 30258-30262 (2017). https://doi.org/10.1021/acsami.7b08012
  46. Y. Bahramzadeh; M. Shahinpoor "Dynamic Curvature Sensing Employing Ionic-Polymer-Metal Composite Sensors". Smart Mater. Struct., 20 [9] 094011 (2011). https://doi.org/10.1088/0964-1726/20/9/094011
  47. M. Shahinpoor; Y. Bar-Cohen; T. Xue; J. Harrison; J. Smith Some Experimental Results on Ionic Polymer-Metal Composites (Ipmc) as Biomimetic Sensors and Actuators . SPIE: 1998; Vol. 3324
  48. M. Konyo; Y. Konishi; S. Tadokoro; T. Kishima Development of Velocity Sensor Using Ionic Polymer-Metal Composites. SPIE: 2004; Vol. 5385
  49. Z. Zhu; Y. Wang; X. Hu; X. Sun; L. Chang; P. Lu "An Easily Fabricated High Performance Ionic Polymer Based Sensor Network". Appl. Phys. Lett., 109 [7] 073504 (2016). https://doi.org/10.1063/1.4961529
  50. Z. Zhu; T. Horiuchi; K. Kruusamae; L. Chang; K. Asaka "Influence of Ambient Humidity on the Voltage Response of Ionic Polymer-Metal Composite Sensor". J. Phys. Chem. B, 120 [12] 3215-3225 (2016). https://doi.org/10.1021/acs.jpcb.5b12634
  51. H. Lei; M. A. Sharif; X. Tan "Dynamics of Omnidirectional Ipmc Sensor: Experimental Characterization and Physical Modeling". IEEE/ASME T. Mech., 21 [2] 601-612 (2016). https://doi.org/10.1109/TMECH.2015.2468080
  52. Z. Zhu; C. Bian; J. Ru; W. Bai; H. Chen "Rapid Deformation of Ipmc under a High Electrical Pulse Stimulus Inspired by Action Potential". Smart Mater. Struct., 28 [1] 01LT01 (2018). https://doi.org/10.1088/1361-665x/aadc38
  53. V. Volpini; L. Bardella; A. Rodella; Y. Cha; M. Porfiri "Modelling Compression Sensing in Ionic Polymer Metal Composites". Smart Mater. Struct., 26 [3] 035030 (2017). https://doi.org/10.1088/0964-1726/26/3/035030
  54. M. Gudarzi; P. Smolinski; Q. M. Wang "Bending Mode Ionic Polymer-Metal Composite (Ipmc) Pressure Sensors". Measurement, 103 250-257 (2017). https://doi.org/10.1016/j.measurement.2017.02.029
  55. M. Gudarzi; P. Smolinski; Q. M. Wang "Compression and Shear Mode Ionic Polymer-Metal Composite (Ipmc) Pressure Sensors". Sensor. Actuat. A-Phys., 260 [15] 99-111 (2017). https://doi.org/10.1016/j.sna.2017.04.010
  56. J. L. Wang; Y. J. Wang; Z. C. Zhu; J. H. Wang; Q. S. He; M. Z. Luo "The Effects of Dimensions on the Deformation Sensing Performance of Ionic Polymer-Metal Composites". Sensors-Basel, 19 [9] 2104 (2019). https://doi.org/10.3390/s19092104
  57. Z. C. Zhu; C. S. Bian; J. Ru; W. F. Bai; H. L. Chen "Rapid Deformation of Ipmc under a High Electrical Pulse Stimulus Inspired by Action Potential". Smart Mater. Struct., 28 [1] 01LT01 (2019). https://doi.org/10.1088/1361-665x/aadc38