Browse > Article
http://dx.doi.org/10.31613/ceramist.2020.23.1.04

Trends of Nafion-based IPMC Application and Development  

Ho, Donghae (Advanced Institute of Nanotechnology, Sungkyunkwan University)
Cho, Sooyoung (Chemical and Biomolecular Engineering, Yonsei University)
Choi, Yoon Young (Advanced Institute of Nanotechnology, Sungkyunkwan University)
Choi, Young Jin (Advanced Institute of Nanotechnology, Sungkyunkwan University)
Cho, Jeong Ho (Chemical and Biomolecular Engineering, Yonsei University)
Publication Information
Ceramist / v.23, no.1, 2020 , pp. 16-26 More about this Journal
Abstract
Recently, polymer-metal composite (IPMC)-based ionic artificial muscle has been drawing a huge attention for its excellent soft actuator performance having outstanding soft actuator performance with efficient conversion of electrical energy to mechanical energy under low working voltage. In addition, light, flexible and soft nature of IPMC and high bending strain response enabled development of versatile sensor application in association with soft actuator. In this paper, current issues of IPMC were discussed including standardizing preparation steps, relaxation under DC bias, inhibiting solvent evaporation, and improving poor output force. Solutions for these drawbacks of IPMC have recently been suggested in recent studies. After following explanation of the IPMC working mechanism, we investigate the main factors that affect the operating performance of the IPMC. Then, we reviewed the optimized IPMC actuator fabrication conditions especially for the preparation process, additive selection for a thicker membrane, water content, solvent substitutes, encapsulation, etc. Lastly, we considered the pros and cons of IPMCs for sensor application in a theoretical and experimental point of view. The strategies discussed in this paper to overcome such deficiencies of IPMCs are highly expected to provide a scope for IPMC utilization in soft robotics application.
Keywords
IPMC; soft actuator; sensor; ionic liquid;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 N. Kamamichi; M. Yamakita; K. Asaka; Z.-W. Luo In A Snake-Like Swimming Robot Using Ipmc Actuator/Sensor, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., IEEE: 2006; pp 1812-1817.
2 M. Mojarrad; M. Shahinpoor In Biomimetic Robotic Propulsion Using Polymeric Artificial Muscles, Proceedings of International Conference on Robotics and Automation, IEEE: 1997; pp 2152-2157.
3 S. Guo; L. Shi; X. Ye; L. Li In A New Jellyfish Type of Underwater Microrobot, 2007 International Conference on Mechatronics and Automation, IEEE: 2007; pp 509-514.
4 K. Jung; J. Nam; H. Choi "Investigations on Actuation Characteristics of Ipmc Artificial Muscle Actuator". Sensor. Actuat. A-Phys., 107 [2] 183-192 (2003).   DOI
5 K. Krishen "Space Applications for Ionic Polymer-Metal Composite Sensors, Actuators, and Artificial Muscles". Acta Astronaut., 64 [11-12] 1160-1166 (2009).   DOI
6 Q. Shen; T. M. Wang; K. J. Kim "A Biomimetic Underwater Vehicle Actuated by Waves with Ionic Polymer-Metal Composite Soft Sensors". Bioinspir. Biomim., 10 [5] 055007 (2015).   DOI
7 H. K. Lee; N. J. Choi; S. Jung; K. H. Park; H. Jung; J. K. Shim; J. W. Ryu; J. Kim "Electroactive Polymer Actuator for Lens- Drive Unit in Auto-Focus Compact Camera Module". ETRI J., 31 [6] 695-702 (2009).   DOI
8 S.-i. Son; D. Pugal; T. Hwang; H. R. Choi; J. C. Koo; Y. Lee; K. Kim; J.-D. Nam "Electromechanically Driven Variable- Focus Lens Based on Transparent Dielectric Elastomer". Appl. Opt., 51 [15] 2987-2996 (2012).   DOI
9 A. Tripathi; B. Chattopadhyay; S. Das "Cost-Effective Fabrication of Ionic Polymer Based Artificial Muscles for Catheter-Guidewire Maneuvering Application". Microsyst. Technol., 25 [3] 1129-1136 (2019).   DOI
10 Y. Bar-Cohen "Electroactive Polymers for Refreshable Braille Displays". SPIE Newsroom, 11 (2009).
11 X. L. Chang; P. S. Chee; E. H. Lim; W. C. Chong "Radio-Frequency Enabled Ionic Polymer Metal Composite (Ipmc) Actuator for Drug Release Application". Smart Mater. Struct., 28 [1] 015024 (2018).   DOI
12 S. J. Kim; I. T. Lee; Y. H. Kim "Performance Enhancement of Ipmc Actuator by Plasma Surface Treatment". Smart Mater. Struct., 16 [1] N6 (2007).   DOI
13 M. Shahinpoor; K. J. Kim "The Effect of Surface-Electrode Resistance on the Performance of Ionic Polymer-Metal Composite (Ipmc) Artificial Muscles". Smart Mater. Struct., 9 [4] 543 (2000).   DOI
14 S.-G. Lee; H.-C. Park; S. D. Pandita; Y. Yoo "Performance Improvement of Ipmc (Ionic Polymer Metal Composites) for a Flapping Actuator". Int. J. Control Autom., 4 [6] 748-755 (2006).
15 K. Kikuchi; S. Tsuchitani "Nafion(R)-Based Polymer Actuators with Ionic Liquids as Solvent Incorporated at Room Temperature". J. Appl. Phys., 106 [5] 053519 (2009).   DOI
16 Y. Wang; H. Chen; Y. Wang; Z. Zhu; D. Li "Effect of Dehydration on the Mechanical and Physicochemical Properties of Gold and Palladium-Ionomeric Polymer-Metal Composite (Ipmc) Actuators". Electrochim. Acta, 129 450-458 (2014).   DOI
17 L. Chang; H. Chen; Z. Zhu; B. Li "Manufacturing Process and Electrode Properties of Palladium- Electroded Ionic Polymer-Metal Composite". Smart Mater. Struct., 21 [6] 065018 (2012).   DOI
18 Z. Zhu; K. Asaka; L. Chang; K. Takagi; H. Chen "Physical Interpretation of Deformation Evolvement with Water Content of Ionic Polymer-Metal Composite Actuator". J. Appl. Phys., 114 [18] 184902 (2013).   DOI
19 U. Deole; R. Lumia; M. Shahinpoor; M. Bermudez "Design and Test of Ipmc Artificial Muscle Microgripper". J. Micro. Nano, Mechatron., 4 [3] 95-102 (2008).   DOI
20 K. Jung; J. Nam; H. Choi "Investigations on Actuation Characteristics of Ipmc Artificial Muscle Actuator". Sensor. Actuat. A-Phys., 107 [2] 183-192 (2003).   DOI
21 Y. Wang; Z. Zhu; H. Chen; B. Luo; L. Chang; Y. Wang; D. Li "Effects of Preparation Steps on the Physical Parameters and Electromechanical Properties of Ipmc Actuators". Smart Mater. Struct., 23 [12] 125015 (2014).   DOI
22 B. L. Stoimenov; J. M. Rossiter; T. Mukai In Anisotropic Surface Roughness Enhances the Bending Response of Ionic Polymer-Metal Composite (Ipmc) Artificial Muscles, Smart Materials IV, International Society for Optics and Photonics: 2006; p 641302.
23 Y. Wang; Z. Zhu; J. Liu; L. Chang; H. Chen "Effects of Surface Roughening of Nafion 117 on the Mechanical and Physicochemical Properties of Ionic Polymer-Metal Composite (Ipmc) Actuators". Smart Mater. Struct., 25 [8] 085012 (2016).   DOI
24 X. Bao; Y. Bar-Cohen; S.-S. Lih In Measurements and Macro Models of Ionomeric Polymer-Metal Composites (Ipmc), Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices (EAPAD), International Society for Optics and Photonics: 2002; pp 220-227.
25 M. Annabestani; M. Maymandi-Nejad; N. Naghavi "Restraining Ipmc Back Relaxation in Large Bending Displacements: Applying Non-Feedback Local Gaussian Disturbance by Patterned Electrodes". IEEE T. Electron. Dev., 63 [4] 1689-1695 (2016).   DOI
26 D. Guo; H. Ding; H. Wei; Q. He; M. Yu; Z. Dai "Hybrids Perfluorosulfonic Acid Ionomer and Silicon Oxide Membrane for Application in Ion-Exchange Polymer-Metal Composite Actuators". Sci. China Series. E: Techno. Sci., 52 [10] 3061-3070 (2009).   DOI
27 D. K. Biswal; D. Bandopadhya; S. K. Dwivedy "Dynamic Modeling and Effect of Dehydration on Segmented Ipmc Actuators Following Variable Parameter Pseudo-Rigid Body Modeling Technique". Mech. Adv. Mater. Struc., 21 [2] 129-138 (2014).   DOI
28 J. H. Park; S. W. Lee; D. S. Song; J. Y. Jho "Highly Enhanced Force Generation of Ionic Polymer-Metal Composite Actuators Via Thickness Manipulation". ACS appl. mater. interfaces, 7 [30] 16659-16667 (2015).   DOI
29 Q. S. He; M. Yu; L. L. Song; H. T. Ding; X. Q. Zhang; Z. D. Dai "Experimental Study and Model Analysis of the Performance of Ipmc Membranes with Various Thickness". J Bionic Eng, 8 [1] 77-85 (2011).   DOI
30 Y. Wang; H. Chen; Y. Wang; B. Luo; L. Chang; Z. Zhu; B. Li "Influence of Additives on the Properties of Casting Nafion Membranes and So-Based Ionic Polymer-Metal Composite Actuators". Polym. Eng. Sci., 54 [4] 818-830 (2014).   DOI
31 C.-A. Dai; C.-J. Chang; A.-C. Kao; W.-B. Tsai; W.-S. Chen; W.-M. Liu; W.-P. Shih; C.-C. Ma "Polymer Actuator Based on Pva/Pamps Ionic Membrane: Optimization of Ionic Transport Properties". Sensor. Actuat. A-Phys., 155 [1] 152-162 (2009).   DOI
32 L. F. Chang; L. F. Yu; C. Q. Li; Q. Z. Niu; Y. Hu; P. Lu; Z. C. Zhu; Y. C. Wu "Ionic Polymer with Single-Layered Electrodes: A Novel Strategy for Ionic Actuator Design". Smart Mater. Struct., 27 [10] (2018).
33 M. Safari; L. Naji; R. T. Baker; F. A. Taromi "The Enhancement Effect of Lithium Ions on Actuation Performance of Ionic Liquid-Based Ipmc Soft Actuators". Polymer, 76 140-149 (2015).   DOI
34 Y. Wang; J. Liu; Y. Zhu; D. Zhu; H. Chen " Formation and Characterization of Dendritic Interfacial Electrodes inside an Ionomer". ACS appl. mater. interfaces, 9 [36] 30258-30262 (2017).   DOI
35 M. Shahinpoor; K. J. Kim "Novel Ionic Polymer-Metal Composites Equipped with Physically Loaded Particulate Electrodes as Biomimetic Sensors, Actuators and Artificial Muscles". Sensor. Actuat. A-Phys., 96 [2] 125-132 (2002).   DOI
36 T.-G. Noh; Y. Tak; J.-D. Nam; H. Choi "Electrochemical Characterization of Polymer Actuator with Large Interfacial Area". Electrochim. Acta, 47 [13] 2341-2346 (2002).   DOI
37 N. M. Shinde; J. M. Yun; R. S. Mane; S. Mathur; K. H. Kim "An Overview of Self- Grown Nanostructured Electrode Materials in Electrochemical Supercapacitors". J. Korean Ceram. Soc., 55 [5] 407-418 (2018).   DOI
38 Y. Bahramzadeh; M. Shahinpoor "Dynamic Curvature Sensing Employing Ionic-Polymer-Metal Composite Sensors". Smart Mater. Struct., 20 [9] 094011 (2011).   DOI
39 M. Shahinpoor; Y. Bar-Cohen; T. Xue; J. Harrison; J. Smith Some Experimental Results on Ionic Polymer-Metal Composites (Ipmc) as Biomimetic Sensors and Actuators . SPIE: 1998; Vol. 3324
40 N. Fujiwara; K. Asaka; Y. Nishimura; K. Oguro; E. Torikai "Preparation of Gold-Solid Polymer Electrolyte Composites as Electric Stimuli-Responsive Materials". Chem. Mater., 12 [6] 1750-1754 (2000).   DOI
41 M. Konyo; Y. Konishi; S. Tadokoro; T. Kishima Development of Velocity Sensor Using Ionic Polymer-Metal Composites. SPIE: 2004; Vol. 5385
42 M. Gudarzi; P. Smolinski; Q. M. Wang "Bending Mode Ionic Polymer-Metal Composite (Ipmc) Pressure Sensors". Measurement, 103 250-257 (2017).   DOI
43 Z. Zhu; Y. Wang; X. Hu; X. Sun; L. Chang; P. Lu "An Easily Fabricated High Performance Ionic Polymer Based Sensor Network". Appl. Phys. Lett., 109 [7] 073504 (2016).   DOI
44 Z. Zhu; T. Horiuchi; K. Kruusamae; L. Chang; K. Asaka "Influence of Ambient Humidity on the Voltage Response of Ionic Polymer-Metal Composite Sensor". J. Phys. Chem. B, 120 [12] 3215-3225 (2016).   DOI
45 H. Lei; M. A. Sharif; X. Tan "Dynamics of Omnidirectional Ipmc Sensor: Experimental Characterization and Physical Modeling". IEEE/ASME T. Mech., 21 [2] 601-612 (2016).   DOI
46 Z. Zhu; C. Bian; J. Ru; W. Bai; H. Chen "Rapid Deformation of Ipmc under a High Electrical Pulse Stimulus Inspired by Action Potential". Smart Mater. Struct., 28 [1] 01LT01 (2018).   DOI
47 V. Volpini; L. Bardella; A. Rodella; Y. Cha; M. Porfiri "Modelling Compression Sensing in Ionic Polymer Metal Composites". Smart Mater. Struct., 26 [3] 035030 (2017).   DOI
48 M. Gudarzi; P. Smolinski; Q. M. Wang "Compression and Shear Mode Ionic Polymer-Metal Composite (Ipmc) Pressure Sensors". Sensor. Actuat. A-Phys., 260 [15] 99-111 (2017).   DOI
49 J. L. Wang; Y. J. Wang; Z. C. Zhu; J. H. Wang; Q. S. He; M. Z. Luo "The Effects of Dimensions on the Deformation Sensing Performance of Ionic Polymer-Metal Composites". Sensors-Basel, 19 [9] 2104 (2019).   DOI
50 Z. C. Zhu; C. S. Bian; J. Ru; W. F. Bai; H. L. Chen "Rapid Deformation of Ipmc under a High Electrical Pulse Stimulus Inspired by Action Potential". Smart Mater. Struct., 28 [1] 01LT01 (2019).   DOI
51 V. Palmre; J. J. Hubbard; M. Fleming; D. Pugal; S. Kim; K. J. Kim; K. K. Leang "An Ipmc-Enabled Bio-Inspired Bending/Twisting Fin for Underwater Applications". Smart Mater. Struct., 22 [1] 014003 (2012).   DOI
52 A. T. Abdulsadda; X. Tan "An Artificial Lateral Line System Using Ipmc Sensor Arrays". Int. J. Smart Nano Mater., 3 [3] 226-242 (2012).   DOI
53 C. K. Chung; P. K. Fung; Y. Z. Hong; M. S. Ju; C. C. K. Lin; T. C. Wu "A Novel Fabrication of Ionic Polymer-Metal Composites (Ipmc) Actuator with Silver Nano-Powders". Sensor. Actuat. B-Chem., 117 [2] 367-375 (2006).   DOI
54 S. Guo; Y. Ge; L. Li; S. Liu In Underwater Swimming Micro Robot Using Ipmc Actuator, 2006 International Conference on Mechatronics and Automation, IEEE: 2006; pp 249-254.
55 K. Surana; P. K. Singh; B. Bhattacharya; C. S. Verma; R. M. Mehra "Synthesis of Graphene Oxide Coated Nafion Membrane for Actuator Application". Ceram. Int., 41 [3] 5093-5099 (2015).   DOI
56 B. Bhandari; G.-Y. Lee; S.-H. Ahn "A Review on Ipmc Material as Actuators and Sensors: Fabrications, Characteristics and Applications". Int. J. Pr. Eng. Man., 13 [1] 141-163 (2012).   DOI
57 R. Tiwari; K. J. Kim "Ipmc as a Mechanoelectric Energy Harvester: Tailored Properties". Smart Mater. Struct., 22 [1] 015017 (2012).   DOI