DOI QR코드

DOI QR Code

Polymer meets ceramic: Polymer-driven advancement of ceramic 3D printing technology

고분자와 세라믹의 만남: 고분자를 통한 세라믹 3D 프린팅 기술의 발전

  • Cha, Chaenyung (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology)
  • 차채녕 (울산과학기술원 신소재공학부)
  • Received : 2020.02.23
  • Accepted : 2020.03.17
  • Published : 2020.03.31

Abstract

The recent advances and popularity of 3D printing technology have centered around building polymerbased 'plastic' materials, due to their low cost, simple and efficient processing, and mechanical toughness. For this reason, printable polymers are actively recruited to create 'ceramic resins' that allow more facile fabrication of ceramic materials that are difficult to print directly. Herein, a brief history and the current state of ceramic 3D printing technology aided by polymer is summarized. In addition, a new ceramic 3D printing technology using polymer-derived ceramics (PDC) is also introduced.

Keywords

References

  1. Kodama, H., Automatic method for fabricating a three-dimensional plastic model with photohardening polymer. Rev. Sci. Instrum., 52 [11], 1770-73 (1981). https://doi.org/10.1063/1.1136492
  2. Patel, D. K.; Sakhaei, A. H.; Layani, M.; Zhang, B.; Ge, Q.; Magdassi, S., Highly Stretchable and UV Curable Elastomers for Digital Light Processing Based 3D Printing. Adv. Mater., 29 [15], 1606000 (2017). https://doi.org/10.1002/adma.201606000
  3. Hull, C. W. Apparatus for production of threedimensional objects by stereolithography. US 4,575,330, 1986.
  4. Chen, Z.; Li, Z.; Li, J.; Liu, C.; Lao, C.; Fu, Y.; Liu, C.; Li, Y.; Wang, P.; He, Y., 3D printing of ceramics: A review. J. Eur. Ceram. Soc., 39 [4], 661-87 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.11.013
  5. Hwa, L. C.; Rajoo, S.; Noor, A. M.; Ahmad, N.; Uday, M. B., Recent advances in 3D printing of porous ceramics: A review. Curr. Opin. Solid State Mater. Sci., 21 [6], 323-47 (2017). https://doi.org/10.1016/j.cossms.2017.08.002
  6. Bae, C.-J.; Ramachandran, A.; Chung, K.; Park, S., Ceramic Stereolithography: Additive Manufacturing for 3D Complex Ceramic Structures. J. Korean Ceram. Soc, 54 [6], 470-77 (2017). https://doi.org/10.4191/kcers.2017.54.6.12
  7. Marcus, H. L.; Beaman, J. J.; Barlow, J. W.; Bourell, D. L., Solid freeform fabrication. Powder processing. Am. Ceram. Soc. Bull., 69 [6], 1030-31 (1990).
  8. Sachs, E.; Cima, M.; Cornie, J., Three-Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model. CIRP Annals, 39 [1], 201-04 (1990). https://doi.org/10.1016/S0007-8506(07)61035-X
  9. Griffith, M. L.; Halloran, J. W. In Ultraviolet curable ceramic suspensions for stereolithography of ceramics, American Society of Mechanical Engineers, Production Engineering Division (Publication) PED, pp. 529-34 (1994).
  10. Griffith, M. L.; Halloran, J. W., Freeform fabrication of ceramics via stereolithography. J. Am. Ceram. Soc., 79 [10], 2601-08 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb09022.x
  11. Brady, G. A.; Halloran, J. W., Stereolithography of ceramic suspensions. Rapid Prototyping Journal, 3 [2], 61-65 (1997). https://doi.org/10.1108/13552549710176680
  12. Badev, A.; Abouliatim, Y.; Chartier, T.; Lecamp, L.; Lebaudy, P.; Chaput, C.; Delage, C., Photopolymerization kinetics of a polyether acrylate in the presence of ceramic fillers used in stereolithography. J. Photochem. Photobiol. A: Chem., 222 [1], 117-22 (2011). https://doi.org/10.1016/j.jphotochem.2011.05.010
  13. Zanchetta, E.; Cattaldo, M.; Franchin, G.; Schwentenwein, M.; Homa, J.; Brusatin, G.; Colombo, P., Stereolithography of SiOC Ceramic Microcomponents. Adv. Mater., 28 [2], 370-76 (2016). https://doi.org/10.1002/adma.201503470
  14. Felzmann, R.; Gruber, S.; Mitteramskogler, G.; Tesavibul, P.; Boccaccini, A. R.; Liska, R.; Stampfl, J., Lithography-Based Additive Manufacturing of Cellular Ceramic Structures. Adv. Eng. Mater., 14 [12], 1052-58 (2012). https://doi.org/10.1002/adem.201200010
  15. 송경은, 깨지기 쉬운 세라믹, 3D프린터로 한번에 인쇄한다. 동아사이언스 April 24, 2017.
  16. Duan, B.; Wang, M.; Zhou, W. Y.; Cheung, W. L.; Li, Z. Y.; Lu, W. W., Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater., 6 [12], 4495-505 (2010). https://doi.org/10.1016/j.actbio.2010.06.024
  17. Sing Swee, L., Direct selective laser sintering and melting of ceramics: a review. Rapid Prototyping Journal, 23 [3], 611-23 (2017). https://doi.org/10.1108/RPJ-11-2015-0178
  18. Subramanian, K., Selective laser sintering of alumina with polymer binders. Rapid Prototyping Journal, 1 [2], 24-35 (1995). https://doi.org/10.1108/13552549510086844
  19. Tang, H.-H.; Chiu, M.-L.; Yen, H.-C., Slurrybased selective laser sintering of polymercoated ceramic powders to fabricate high strength alumina parts. J. Eur. Ceram. Soc., 31 [8], 1383-88 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.02.020
  20. Guo, D.; Li, L.-t.; Cai, K.; Gui, Z.-l.; Nan, C.-w., Rapid Prototyping of Piezoelectric Ceramics via Selective Laser Sintering and Gelcasting. J. Am. Ceram. Soc., 87 [1], 17-22 (2004). https://doi.org/10.1111/j.1151-2916.2004.tb19938.x
  21. Danforth, S., Fused Deposition of Ceramics: A New Technique for the Rapid Fabrication of Ceramic Components. Materials Technology, 10 [7-8], 144-46 (1995). https://doi.org/10.1080/10667857.1995.11752614
  22. Jafari, M. A., A novel system for fused deposition of advanced multiple ceramics. Rapid Prototyping Journal, 6 [3], 161-75 (2000). https://doi.org/10.1108/13552540010337047
  23. Khatri, B.; Lappe, K.; Habedank, M.; Mueller, T.; Megnin, C.; Hanemann, T., Fused Deposition Modeling of ABS-Barium Titanate Composites: A Simple Route towards Tailored Dielectric Devices. Polymers, 10 [6], 666 (2018). https://doi.org/10.3390/polym10060666
  24. Iyer, S.; McIntosh, J.; Bandyopadhyay, A.; Langrana, N.; Safari, A.; Danforth, S. C.; Clancy, R. B.; Gasdaska, C.; Whalen, P. J., Microstructural Characterization and Mechanical Properties of Si3N4 Formed by Fused Deposition of Ceramics. International Journal of Applied Ceramic Technology, 5 [2], 127-37 (2008). https://doi.org/10.1111/j.1744-7402.2008.02193.x
  25. Mohanty, S.; Larsen, L. B.; Trifol, J.; Szabo, P.; Burri, H. V. R.; Canali, C.; Dufva, M.; Emnéus, J.; Wolff, A., Fabrication of scalable and structured tissue engineering scaffolds using water dissolvable sacrificial 3D printed moulds. Materials Science and Engineering: C, 55, 569-78 (2015). https://doi.org/10.1016/j.msec.2015.06.002
  26. Wen, Y.; Xun, S.; Haoye, M.; Baichuan, S.; Peng, C.; Xuejian, L.; Kaihong, Z.; Xuan, Y.; Jiang, P.; Shibi, L., 3D printed porous ceramic scaffolds for bone tissue engineering: a review. Biomaterials Science, 5 [9], 1690-98 (2017). https://doi.org/10.1039/C7BM00315C
  27. Eckel, Z. C.; Zhou, C.; Martin, J. H.; Jacobsen, A. J.; Carter, W. B.; Schaedler, T. A., Additive manufacturing of polymer-derived ceramics. Science, 351 [6268], 58-62 (2016). https://doi.org/10.1126/science.aad2688
  28. Ainger, F. W.; Herbert, J. M., The Preparation of Phosphorus-Nitrogen Compounds as Non-Porous Solids. Academic Press: New York, pp. 168-182 (1965).
  29. Chantrell, P. G.; Popper, P., Inorganic Polymers and Ceramics. Academic Press: New York, pp. 87-103 (1965).
  30. Jansen, M.; Jüngermann, H., A new class of promising ceramics based on amorphous inorganic networks. Curr. Opin. Solid State Mater. Sci., 2 [2], 150-57 (1997). https://doi.org/10.1016/S1359-0286(97)80059-9
  31. Fritz, G.; Raabe, B., Bildung siliciumorganischer Verbindungen. V. Die Thermische Zersetzung von Si(CH3)4 und Si(C2H5)4. Z. Anorg. Allg. Chem., 286 [3-4], 149-67 (1956). https://doi.org/10.1002/zaac.19562860307
  32. Seishi, Y.; Josaburo, H.; Mamoru, O., Continuous silicon carbide fiber of high tensile strength. Chem. Lett., 4 [9], 931-34 (1975). https://doi.org/10.1246/cl.1975.931
  33. Riedel, R.; Passing, G.; Schonfelder, H.; Brook, R. J., Synthesis of dense silicon-based ceramics at low temperatures. Nature, 355 [6362], 714-17 (1992). https://doi.org/10.1038/355714a0
  34. Liu, G.; Zhao, Y.; Wu, G.; Lu, J., Origami and 4D printing of elastomer-derived ceramic structures. Science Advances, 4 [8], eaat0641 (2018). https://doi.org/10.1126/sciadv.aat0641
  35. Fu, Y.; Chen, Z.; Xu, G.; Wei, Y.; Lao, C., Preparation and stereolithography 3D printing of ultralight and ultrastrong ZrOC porous ceramics. J. Alloys Compd., 789, 867-73 (2019). https://doi.org/10.1016/j.jallcom.2019.03.026
  36. Wang, M.; Xie, C.; He, R.; Ding, G.; Zhang, K.; Wang, G.; Fang, D., Polymer-derived silicon nitride ceramics by digital light processing based additive manufacturing. J. Am. Ceram. Soc., 102 [9], 5117-26 (2019). https://doi.org/10.1111/jace.16389
  37. Wang, X.; Schmidt, F.; Hanaor, D.; Kamm, P. H.; Li, S.; Gurlo, A., Additive manufacturing of ceramics from preceramic polymers: A versatile stereolithographic approach assisted by thiol-ene click chemistry. Additive Manufacturing, 27, 80-90 (2019). https://doi.org/10.1016/j.addma.2019.02.012
  38. Colombo, P.; Mera, G.; Riedel, R.; Soraru, G. D., Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics. J. Am. Ceram. Soc., 93 [7], 1805-37 (2010).