비선형 분석에 의한 뇌파 아티펙트 검출 알고리즘

EEG Artifact Detection Algorithm Base on Nonlinear Analysis Method

  • 김철기 (부경대학교 공과대학 제어계측공학과) ;
  • 박준모 (동명대학교 공과대학 전자및의용공학부) ;
  • 김남호 (부경대학교 공과대학 제어계측공학과)
  • Kim, Chul-Ki (Dept. of Control and Instrumentation Eng., Pukyoung National University) ;
  • Park, Jun-Mo (School of Electronic and Biomedical Engineering, Tongmyong University) ;
  • Kim, Nam-Ho (Dept. of Control and Instrumentation Eng., Pukyoung National University)
  • 투고 : 2020.01.07
  • 심사 : 2020.03.21
  • 발행 : 2020.03.31

초록

수술 중 마취 깊이를 측정하는 방법으로 뇌파를 이용한 다양한 파라미터들이 사용되고 있으며, 실제 임상에서는 선형분석 기법 중 하나인 SEF가 널리 사용되고 있다. 그러나 최근 EEG를 포함한 생체학적 신호는 비선형 성질을 가지고 있다는 연구결과가 발표되면서, 이를 기반으로 한 파라미터 개발이 이뤄지고 있다. 본 연구에서는 보다 정확한 EEG 측정과 분석을 위해 비선형 분석 기법 기반의 파라미터를 개발과 이에 대한 정현파 분석을 통한 데이터와의 비교 분석을 통해 수술 중 전자장비와 EEG 계측 시 혼입될 수 있는 노이즈를 추출하고자 한다.

Various parameters are used to measure anesthetic depth during surgery using brain waves, and in actual clinical use, the linear analysis SEF is widely used. However, with recent studies showing that biological signals including EEG, contain nonlinear properties interest in nonlinear analysis of brain signals is increasing and parameters based on these are being developed. In this study, we are going to develop a parameter that can measure EEG using the nonlinear analysis method and extract noise that can be mixed with external electronic equipment and EEG instrumentation by comparing it with the data from the bispectrum analysis of static waves.

키워드

참고문헌

  1. S. K. Kim, S. K. Yoo, "Multimodal bio-signal measurement system for sleep analysis," Journal of Korea Multimedia Society, vol. 21, no. 5, pp. 609-616, 2018.
  2. W. S. Pritchard, W. D. Dennis, K. K. Kelly, "Dimensional analysis of resting human EEG II: Surrogate-data testing indicates nonlinearity but not low-dimensional chaos," Psychophysiology, vol. 32, no. 5, pp. 486-491, 1995.
  3. M. Esther, ter Braack, C. de Vos Cecile, J. A. M. van Putten Michel, "Masking the auditory evoked potential in TMS-EEG: A comparison of various methods," Brain Topography, vol. 28, pp. 520-528, 2015.
  4. A. Tara, Whitten, M. Adam, Hughes, T. Clayton, Dickson, B. Jeremy, Caplan, "A better oscillation detection method robustly extracts EEG rhythms across brain state changes: The human alpha rhythm as a test case", NeuroImage, vol. 54, Issue 2, pp. 860-874, 2011.
  5. J. M. Park, J. D. Park, G. R. Jeon, "EEG signal characteristic analysis for monitoring of anesthesia depth using bicoherence analysis method," The transactions of the Korean Institute of Electrical Engineers, vol. 55, no. 1, pp. 35-41, 2006.
  6. J. Kang, J. W. Kim, H. J. Lee, K. J. Oh, "Chaos analysis of real estate auction sale price rate time series," Journal of the Korean Data and Information Science Society, vol. 28, Issue 2, pp. 371-381, 2017.
  7. H. J. Lee, G. T. Lee, Y. S. Park, K. J. Cha, M. I. Park, J. E. Oh, "A study on the nonlinearity of chaotic signal by bispectral analysis," Transactions of the Korean Society of Mechanical Engineers, vol. 31, no. 8, pp. 817-825, 2007.
  8. J. M. Park, "Development for the index of an anesthesia depth using the power spectrum density analysis," Journal of Biomedical Engineering Research, vol. 30, no. 4, pp. 327-332, 2009.
  9. E. S. Kim, Y. J. Lee, "Artificial intelligence: Analysis of nonlinear time series by bispectrum methods and its," The KIPS Transactions: PartA, vol. 6 no. 5, pp. 1312-1322, 1999.