DOI QR코드

DOI QR Code

탄소재료 전구체로 사용가능한 헤테로 고리방향족 고분자의 탄화거동에 대한 열처리 온도의 영향

Effect of Heat-Treatment on Carbonization Behavior of Hetero-cyclic Aromatic Polymers for Carbon Material Precursors

  • 강찬솔 (신한대학교 섬유소재공학과)
  • Kang, Chan Sol (Department of Textile Materials Engineering, Shinhan University)
  • 투고 : 2020.04.28
  • 심사 : 2020.05.21
  • 발행 : 2020.06.30

초록

In this study, carbonized polyhydroxyamide (C-PHA) and polybenzoxazole (C-PBO) precursors were prepared from PHA and PBO polymers, respectively, through heattreatment of 600-1200 ℃ for 1 h under nitrogen atmosphere. Fourier-transform infrared spectroscopy (FT-IR), elemental analysis (EA), X-ray photoelectron spectroscopy (XPS), thermographic and mass spectrometry, wide-angle X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and electrical conductivity test were performed to monitor the changes in the chemical structures of the two precursors. From FT-IR, EA, and XPS results, PHA and PBO polymers were directly converted to C-PHA and C-PBO precursors, respectively, above 800 ℃ without undergoing the oxidative stabilization process. The maximum carbonization yield of the carbonized precursors was 1.36 times (68.3%) higher than that of the commercialized PAN-based carbon fiber (50%). High-resolution transmission electron microscopy images revealed a small amount (~30%) of turbostratic graphite structure around an external area in the C-PBO precursor at 1000 ℃.

키워드

과제정보

본 논문은 2020년도 신한대학교 학술연구비 지원으로 연구되었으며, 당 기관의 연구비 지원에 감사드립니다.

참고문헌

  1. C. Liu, Z. Yu, D. Neff, A. Zhamu, and B. Z. Jang, "Graphenebased Supercapacitor with an Ultrahigh Energy Density", Nano Lett., 2010, 10, 4863-4868. https://doi.org/10.1021/nl102661q
  2. Y. E. Miao, G. N. Zhu, H. Hou, Y. Y. Xia, and T. Liu, "Electrospun Polyimide Nanofiber-based Nonwoven Separators for Lithium-ion Batteries", J. Power Sour., 2013, 226, 82-86. https://doi.org/10.1016/j.jpowsour.2012.10.027
  3. C. Chen, Z. Zhu, X. Li, and J. Li, "Electropolymerization and Energy Storage of Poly[Ni(salphen)]/MWCNT Composite Materials for Supercapacitors", J. Appl. Polym. Sci., 2017, 134, 44464.
  4. E. Ismar, T. Karazehir, M. Ates, and A. S. Sarac, "Electrospun Carbon Nanofiber Web Electrode: Supercapacitor Behavior in Various Electrolytes", J. Appl. Polym. Sci., 2018, 135, 45723. https://doi.org/10.1002/app.45723
  5. J. Jin and A. A. Ogale, "Carbon Fibers Derived from Wet-spinning of Equi-component Lignin/polyacrylonitrile Blends", J. Appl. Polym. Sci., 2018, 135, 45903. https://doi.org/10.1002/app.45903
  6. T. H. Ko and L. C. Huang, "The Influence of Cobaltous Chloride Modification on Physical Properties and Microstructure of Modified PAN Fiber during Carbonization", J. Appl. Polym. Sci., 1998, 70, 2409-2415. https://doi.org/10.1002/(SICI)1097-4628(19981219)70:12<2409::AID-APP13>3.0.CO;2-0
  7. M. Jing, C. G. Wang, Q. Wang, Y. J. Bai, and B. Zhu, "Chemical Structure Evolution and Mechanism during Pre-carbonization of PAN-based Stabilized Fiber in the Temperature Range of 350-$600^{\circ}C$", Polym. Degra. Stab., 2007, 92, 1737-1742. https://doi.org/10.1016/j.polymdegradstab.2007.05.020
  8. K. H. Jung and J. P. Ferraris, “Preparation and Electrochemical Properties of Carbon Nanofibers Derived from Polybenzimidazole/polyimide Precursor Blends”, Carbon, 2012, 50, 5309-5315. https://doi.org/10.1016/j.carbon.2012.07.019
  9. I. Karakan and L. Erzurumluoglu, "Formation of Nongraphitizing Carbon Fibers Prepared from Poly(p-phenylene terephthalamide) Precursor Fibers", Fiber. Polym., 2015, 16, 961-974. https://doi.org/10.1007/s12221-015-0961-5
  10. M. Chokai, M. Taniguchi, S. Moriya, K. Matsubayashi, T. Shinoda, Y. Nabae, S. Kuroki, T. Hayakawa, M. Kakimoto, J. Ozaki, and S. Miyata, "Preparation of Carbon Alloy Catalysts from a Polyhydroxyamide with Iron Phthalocyanine via a Poly-biphenylenebisoxazole Composite", J. Photopolym. Sci. Tech., 2010, 23, 459-464. https://doi.org/10.2494/photopolymer.23.459
  11. Q. Gao, F. Qu, W. Zheong, and H. Lin "A Simple Method to Synthesize Graphitic Mesoporous Carbon Materials with Different Structures", J. Porous. Mater., 2013, 20, 983-988. https://doi.org/10.1007/s10934-013-9677-3
  12. X. Lin, C. Wang, M. Yu, Z. Lin, and Y. Liu, "Study on the Relationships of Mechanical Performance with the Shortrange and Long-range Structure of 500-$900^{\circ}C$ Carbonized Fiber", J. Ind. Text., 2015, 45, 33-47. https://doi.org/10.1177/1528083714521072
  13. C. S. Kang, C. W. Park, M. H. Jee, M. J. Paik, and D. H. Baik, "Synthesis and Thermal Properties of Polyhydroxyamide Copolymer and Its Derivatives", Fiber. Polym., 2016, 17, 657-662. https://doi.org/10.1007/s12221-016-6207-3
  14. C. S. Kang, M. H. Jee, M. J. Yeo, and D. H. Baik, "Effects of Drawing and Heat-Treatment Conditions on the Structure and Mechanical Properties of Polyhydroxyamide and Polybenzoxazole Fibers", Fiber. Polym., 2018, 19, 1626-1631. https://doi.org/10.1007/s12221-018-8241-9
  15. M. E. G. Mosquera, M. Jamond, A. Martinez-Alonso, and J. M. D. Tascon, "Thermal Transformations of Kevlar Aramid Fibers during Pyrolysis: Infrared and Thermal Analysis Studies", Chem. Mater., 1994, 6, 1918-1924. https://doi.org/10.1021/cm00047a006
  16. C. L. Liu, W. S. Dong, J. R. Song, and L. Liu, “Evolution of Microstructure and Properties of Phenolic Fibers during Carbonization”, Mat. Sci. Eng. A, 2007, 459, 347-354. https://doi.org/10.1016/j.msea.2007.02.067
  17. K. A. Trick and T. E. Saliba, “Mechanisms of the Pyrolysis of Phenolic Resin in a Carbon/phenolic Composite”, Carbon, 1995, 33, 1509-1515. https://doi.org/10.1016/0008-6223(95)00092-R
  18. N. Yoshizawa, H. Hatori, K. Yoshikawa, K. Miura, and T. Abe, “TEM Observation of Heterogeneous Polyhedronization Behavior in Graphitized Carbon Nanospheres”, Mat. Sci. Eng. B, 2008, 148, 245-248. https://doi.org/10.1016/j.mseb.2007.09.032
  19. M. B. Vazquez-Santos, E. Geissler, K. Laszlo, J. N. Rouzaud, A. Martinez-Alonso, and J. M. Tascon, “Graphitization of Highly Porous Carbons Derived from Poly(p-phenylene benzobisoxazole)”, Carbon, 2012, 50, 2929-2940. https://doi.org/10.1016/j.carbon.2012.02.062
  20. G. S. Chung, S. M. Jo, and B. C. Kim, "Properties of Carbon Nanofibers Prepared from Electrospun Polyimide", J. Appl. Polym. Sci., 2005, 97, 165-170. https://doi.org/10.1002/app.21742
  21. F. Tuinstra and J. L. Koenig, "Raman Spectrum of Graphite", J. Chem. Phys., 1970, 53, 1126-1130. https://doi.org/10.1063/1.1674108
  22. S. Chen, D. Han, and H. Hou, "High Strength Electrospun Fibers", Polym. Adv. Tech., 2011, 22, 295-303. https://doi.org/10.1002/pat.1864
  23. W. Johnson and W. Watt, “Structure of High Modulus Carbon Fibres”, Nature, 1967, 215, 384-386. https://doi.org/10.1038/215384a0