DOI QR코드

DOI QR Code

Bifurcation Analysis of a Spatiotemporal Parasite-host System

  • Baek, Hunki (Department of Mathematics Education, Daegu Catholic University)
  • Received : 2018.04.25
  • Accepted : 2020.03.07
  • Published : 2020.06.30

Abstract

In this paper, we take into account a parasite-host system with reaction-diffusion. Firstly, we derive conditions for Hopf, Turing, and wave bifurcations of the system in the spatial domain by means of linear stability and bifurcation analysis. Secondly, we display numerical simulations in order to investigate Turing pattern formation. In fact, the numerical simulation discloses that typical Turing patterns, such as spotted, spot-stripelike mixtures and stripelike patterns, can be formed. In this study, we show that typical Turing patterns, which are well known in predator-prey systems ([7, 18, 25]), can be observed in a parasite-host system as well.

Keywords

References

  1. D. Alonso, F. Bartumeus and J. Catalan, Mutual interference between predators can give rise to Turing spatial patterns, Ecology, 83(1)(2002), 28-34. https://doi.org/10.1890/0012-9658(2002)083[0028:MIBPCG]2.0.CO;2
  2. R. M. Anderson and R. M. May, The population dynamics of microparasites and their invertebrate hosts, Phil. Tran. R. Soc. Lond. B, 291(1981), 451-524. https://doi.org/10.1098/rstb.1981.0005
  3. H. Baek, On the dynamical behavior of a two-prey one-predator system with two-type functional responses, Kyungpook Math. J., 53(4)(2013), 647-660. https://doi.org/10.5666/KMJ.2013.53.4.647
  4. H. Baek, Spatiotemporal Dynamics of a Predator-Prey System with Linear Harvesting Rate, Math. Probl. Eng., (2014), Art. ID 625973, 9 pp.
  5. M. Baurmann, T. Gross and U. Feudel, Instabilities in spatially extended predator-prey systems : Spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations, J. Theoret. Biol., 245(2007), 220-229. https://doi.org/10.1016/j.jtbi.2006.09.036
  6. I. Berenstein, M. Dolnik, L. Yang, A. M. Zhabotinsky, and I. R. Epstein, Turing pattern formation in a two-layer system: Superposition and superlattice patterns, Physical Review E, 70(2004), 046219. https://doi.org/10.1103/PhysRevE.70.046219
  7. B. I. Camara and M. A. Aziz-Alaoui, Turing and Hope patterns formation in a predator-prey model with Leslie-Gower-type functional response, Dynamics of Continuous, Discrete and Impulsive Systems Series B: Algorithms and Applications, 16(2009), 479-488.
  8. D. Ebert, M. Lipsitch and K. L. Mangin, The effect of parasites on host population density and extinction: experimental epidemiology with Daphnia and six microparasites, Am. Nat., 156(2000), 459-477. https://doi.org/10.1086/303404
  9. M. R. Garvie, Finite-Difference schemes for reaction-diffusion equations modeling predator-prey interactions in MATLAB, Bull. Math. Biol., 69(2007), 931-956. https://doi.org/10.1007/s11538-006-9062-3
  10. D. A. Garzon-Alvarado, C. H. Galeano and J. M. Mantilla, Turing pattern formation for reaction-convection-diffusion systems in fixed domains submitted to toroidal velocity fields, Appl. Math. Model., 35(2011), 4913-4925. https://doi.org/10.1016/j.apm.2011.03.040
  11. J. Hale and H. Kocak, Dynamics and bifurcations, Springer-Verlag, New York, 1991.
  12. T.-W. Hwang and Y. Kuang, Deterministic extinction effect of parasites on host populations, J. Math. Biol., 46(2003), 17-30. https://doi.org/10.1007/s00285-002-0165-7
  13. I. Kozlova, M. Singh, A. Easton and P. Ridland, Twospotted spider mite predator-prey model, Math. Comput. Model., 42(2005), 1287-1298. https://doi.org/10.1016/j.mcm.2005.01.036
  14. L. Li, Patch invasion in a spatial epidemic model, Appl. Math. Comput., 258(2015), 342-349. https://doi.org/10.1016/j.amc.2015.02.006
  15. L. Li and Z. Jin, Pattern dynamics of a spatial predator-prey model with noise, Nonliear Dynam., 67(3)(2012), 1737-1744. https://doi.org/10.1007/s11071-011-0101-8
  16. J. Li, Y. Xiao and Y. Yang, Global analysis of a simple parasite-host model with homoclinic orbits, Math. Biosci. Eng., 9(4)(2012), 767-784. https://doi.org/10.3934/mbe.2012.9.767
  17. A. B. Medvinsky, S. V. Petrovskii, I. A. Tikhonova, H. Malchow and B.-L. Li, Spatiotemporal complexity of plankton and fish dynamics, SIAM Rev., 44(3)(2002), 311-370. https://doi.org/10.1137/S0036144502404442
  18. F. Rao, W. Wang and Z. Li, Spatiotemporal complexity of a predator-prey system with the effect of noise and external forcing, Chaos, Solitons Fractals, 41(2009), 1634-1644. https://doi.org/10.1016/j.chaos.2008.07.005
  19. M. J. Smith, J. D. M. Rademacher and J. A. Sherratt, Absolutes stability of wavetrains can explain spatiotemporal dynamics in reaction-diffusion systems of lambda-omega type, SIAM J. Appl. Dyn. Syst., 8(3)(2009), 1136-1159. https://doi.org/10.1137/090747865
  20. M. J. Smith, J. A. Sherratt, The effects of unequal diffusion coefficients on periodic travelling waves in oscillatory reaction-diffusion systems, Physica D, 236(2007), 90-103. https://doi.org/10.1016/j.physd.2007.07.013
  21. K. Wang and Y. Kuang, Fluctuation and extinction dynamics in host-microparasite systems, Commun. Pure Appl. Anal., 10(5)(2011), 1537-1548. https://doi.org/10.3934/cpaa.2011.10.1537
  22. W. Wang, W. Li, Z. Li and H. Zhang, The effect of colored noise on spatiotemporal dynamics of biological invasion in a diffusive predator-prey system, Biosystems, 104(2011), 48-56. https://doi.org/10.1016/j.biosystems.2010.12.011
  23. W. Wang, Q.-X. Liu and Z. Jin, Spatiotemporal complexity of a ratio-dependent predator-prey system, Phys. Rev. E, 75(2007), 051913, 9 pp. https://doi.org/10.1103/PhysRevE.75.051913
  24. Y. Wang, J. Wang and L. Zhang, Cross diffusion-induced pattern in an SI model, Appl. Math. Comput., 217(2010), 1965-1970. https://doi.org/10.1016/j.amc.2010.06.052
  25. W. Wang, L. Zhang, H. Wang and Z. Li, Pattern formation of a predator-prey system with Ivlev-type functional response, Ecological Modelling, 221(2010), 131-140. https://doi.org/10.1016/j.ecolmodel.2009.09.011
  26. L. Yang, M. Dolnik, A. M. Zhabotinsky and I. R. Epstein, Pattern formation arising from interactions between Turing and wave instabilities, J. Chem. Phys., 117(15)(2002), 7259-7265. https://doi.org/10.1063/1.1507110
  27. Z. F. Zhang, T. R. Ding, W. Z. Huang, Zh. X. Dong, Qualitative theory of differential equations, Translations of Mathematical Monographs 101, AMS, Providence, RI, 1992.