DOI QR코드

DOI QR Code

이중층 몰리브데늄을 후면전극으로 적용한 비진공법 CuInSe2 태양전지의 특성

Characterization of Non-vacuum CuInSe2 Solar Cells Deposited on Bilayer Molybdenum

  • 황지섭 (광전하이브리드연구센터, 한국과학기술연구원) ;
  • 윤희선 (광전하이브리드연구센터, 한국과학기술연구원) ;
  • 장윤희 (광전하이브리드연구센터, 한국과학기술연구원) ;
  • 이장미 (광전하이브리드연구센터, 한국과학기술연구원) ;
  • 이도권 (광전하이브리드연구센터, 한국과학기술연구원)
  • Hwang, Ji Sub (Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Yun, Hee-Sun (Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Jang, Yoon Hee (Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Lee, Jang mi (Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Lee, Doh-Kwon (Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST))
  • 투고 : 2020.05.02
  • 심사 : 2020.05.27
  • 발행 : 2020.06.30

초록

Molybdenum (Mo) thin films are widely used as back contact in copper indium diselenide (CISe) solar cells. However, despite this, there are only few published studies on the properties of Mo and characteristics of CISe solar cells formed on such Mo substrates. In this studies, we investigated the properties of sputter deposited Mo bilayer, and fabricated non-vacuum CISe solar cells using bilayer Mo substrates. The changes in surface morphology and electrical resistivity were traced by varying the gas pressure during deposition of the bottom Mo layer. In porous surface structure, it was confirmed that the electrical resistivity of Mo bilayer was increased as the amount of oxygen bonded to the Mo atoms increased. The resulting solar cell characteristics vary as the bottom Mo layer deposition pressure, and the maximum solar cell efficiency was achieved when the bottom layer was deposited at 7 mTorr with a thickness of 100 nm and the top layer deposited at 3 mTorr with a thickness of 400 nm.

키워드

참고문헌

  1. Simi, N. J., Kuriakose, L., Vinayakan, R., Ison, V. V., "$CuInS_2-In_2Se_3$ quantum dots - a novel material via a green synthesis approach," RSC Advances, Vol. 8, pp. 37146-37150, 2018. https://doi.org/10.1039/C8RA07389A
  2. Kim, S., Kang, M., Kim, S., Heo, J. H., Noh, J. H., Im, S. H., Seok, S. I., Kim, S. W., “Fabrication of $CuInTe_2$ and $CuInTe_{2-x}Se_x$ Ternary Gradient Quantum Dots and Their Application to Solar Cells,” ACS Nano, Vol. 7, No. 6, pp. 4756-4763, 2016. https://doi.org/10.1021/nn401274e
  3. Kim, K., Ahn, S. K., Choi, J. H., Yoo, J., Eo, Y. J., Cho, J. S., Cho, A., Gwak, J., Song, S., Cho, D. H., Chung, Y. D., Yun, J. H., "Highly efficient Ag-alloyed Cu(In,Ga)$Se_2$ solar cells with wide bandgaps and their application to chalcopyrite- based tandem solar cells," Nano Energy, Vol. 48, pp. 345-352, 2018. https://doi.org/10.1016/j.nanoen.2018.03.052
  4. Liyanage, W. P. R., Nath, M., "$CuInSe_2$ nanotube arrays for efficient solar energy conversion," Scientific Reports, Vol. 9, pp. 16751-16760, 2019. https://doi.org/10.1038/s41598-019-53228-9
  5. Kesslera, F., Rudmann, D., "Technological aspects of flexible CIGS solar cells and modules," Solar Energy, Vol. 77, pp. 685-695, 2004. https://doi.org/10.1016/j.solener.2004.04.010
  6. Forest, R. V., Eser, E., Mccandless, B. E., Birkmire, R. W., Chen, J. G., “Understanding the role of oxygen in the segregation of sodium at the surface of molybdenum coated soda-lime glass,” AIChE Journal, Vol. 60, No. 6, pp. 2365-2372, 2014. https://doi.org/10.1002/aic.14425
  7. Goossens, A., Hofhuis, J., "Spray-deposited $CuInS_2$ solar cells," Nanotechnology, Vol. 19, No. 42, pp. 424018-424025, 2008. https://doi.org/10.1088/0957-4484/19/42/424018
  8. Bollero, A., Andres, M., Garcia, C., Abajo, J., Gutierrez, M. T., “Morphological, electrical and optical properties of sputtered Mo thin films on flexible substrates,” Phys. Status Solidi A, Vol. 205, No. 3, pp. 540-546, 2009.
  9. Scofield, J. H., Dudaa, A., Albin, D., Ballard, B. L., Predecki, P. K., "Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells," Thin Solid Films, Vol. 260, pp. 26-31, 1995. https://doi.org/10.1016/0040-6090(94)06462-8
  10. Jingxue, F., Zhao, W., Wei, W., Ye, Y., Lin, Z., Xin, W., Ruijiang, H., Hui, S., Chen, M. Z. Q., "Preparation and opimization of a molybdenum electrode for CIGS solar cells," AIP Advances, Vol. 6, pp. 5210-5218, 2016.
  11. Khoshsirat, N., Ali, F., Tiong, V. T., Amjadipour, M., Wang, H., Shafiei, M., Motta, N., "Optimization of Mo/Cr bilayer back contacts for thin-film solar cells," Beilstein Journal of Nanotechnoogy, Vol. 9, pp. 2700-2707, 2018. https://doi.org/10.3762/bjnano.9.252
  12. Salome, P. M. P., Malaquias, J., Fernandes, P. A., Da Cunha, A. F., "Mo bilayer for thin film photovoltaics Revisited," Journal of Physics D: Applied Physics, Vol. 43, pp. 5501-5507, 2010.
  13. Roger, C., Noel, S., Sicardy, O., Faucherand, P., Grenet, L., Karst, N., Fournier, H., Roux, F., Ducroquet, F., Brioude, A., Perraud, S., "Characteristics of molybdenum bilayer back contacts for Cu(In,Ga)$Se_2$ solar cells on Ti foils," Thin Solid Films, Vol. 548, pp. 608-616, 2013. https://doi.org/10.1016/j.tsf.2013.09.080
  14. Wang, Z., Kuk, S., Kim, W. M., Jeong, J.-H., Hwang, D. J.,"Picosecond laser scribing of bilayer molybdenum thin films on flexible polyimide substrate," Applied Surface Science, Vol. 493, pp. 320-330, 2019. https://doi.org/10.1016/j.apsusc.2019.06.251
  15. Chai, Y., Su, S., Yan, D., Ozkan, M., Lake, R., Ozkan, C. S., "Strain gated bilayer molybdenum disulfide field effect transistor with edge contacts," Scientific Reports, Vol. 7, pp. 41593-41602, 2017. https://doi.org/10.1038/srep41593
  16. Heinss, J. P., Handel, F., Meyer, T., Wurz, R., "High productive deposited Mo layers for back ohmic contacts of solar cells," Plasma Processes and Polymers, Vol. 6, pp. S29-S35, 2009. https://doi.org/10.1002/ppap.200930203
  17. Yamaguchi, T., Miyagawa, R., “Effects of oxygen on the properties of sputtered molybdenum thin films,” Japanese Journal of Applied Physics, Vol. 30, No. 9A, pp. 2069-2073, 1991. https://doi.org/10.1143/JJAP.30.2069